
222

Hardware-Aware
Static Optimization of Hyperdimensional Computations

PU (LUKE) YI, Stanford University, USA

SARA ACHOUR, Stanford University, USA

Binary spatter code (BSC)-based hyperdimensional computing (HDC) is a highly error-resilient approximate

computational paradigm suited for error-prone, emerging hardware platforms. In BSC HDC, the basic datatype

is a hypervector, a typically large binary vector, where the size of the hypervector has a significant impact on

the fidelity and resource usage of the computation. Typically, the hypervector size is dynamically tuned to

deliver the desired accuracy; this process is time-consuming and often produces hypervector sizes that lack

accuracy guarantees and produce poor results when reused for very similar workloads. We presentHeim, a

hardware-aware static analysis and optimization framework for BSC HD computations. Heim analytically

derives theminimumhypervector size thatminimizes resource usage andmeets the target accuracy requirement.

Heim guarantees the optimized computation converges to the user-provided accuracy target on expectation,

even in the presence of hardware error.Heim deploys a novel static analysis procedure that unifies theoretical

results from the neuroscience community to systematically optimize HD computations.

We evaluate Heim against dynamic tuning-based optimization on 25 benchmark data structures. Given

a 99% accuracy requirement,Heim-optimized computations achieve a 99.2%-100.0% median accuracy, up to

49.5% higher than dynamic tuning-based optimization, while achieving 1.15x-7.14x reductions in hypervector

size compared to HD computations that achieve comparable query accuracy and finding parametrizations

30.0x-100167.4x faster than dynamic tuning-based approaches. We also useHeim to systematically evaluate

the performance benefits of using analog CAMs and multiple-bit-per-cell ReRAM over conventional hardware,

while maintaining iso-accuracy – for both emerging technologies, we find usages where the emerging hardware

imparts significant benefits.

CCS Concepts: •Hardware→ Emerging languages and compilers; Memory and dense storage; • Software

and its engineering→ Software notations and tools.

Additional KeyWords and Phrases: unconventional computing, emerging hardware technologies, program

optimization

ACMReference Format:

Pu (Luke) Yi and Sara Achour. 2023. Hardware-Aware Static Optimization of Hyperdimensional Computations.

Proc. ACM Program. Lang. 7, OOPSLA2, Article 222 (October 2023), 30 pages. https://doi.org/10.1145/3622797

1 INTRODUCTION

Over the years, researchers have developed many emerging memory technologies (e.g., FeRAM,

ReRAM, STT-MRAM) that offer non-volatility, better write endurance, and faster write speeds, and

support integration into monolithic 3D integrated circuits due to low annealing temperatures. [Ha-

lawani et al. 2021; Imani et al. 2017b, 2019c; Karunaratne et al. 2020; Poduval et al. 2021; Rahimi et al.

2017; Wu et al. 2018] Moreover, resistive memories, such as ReRAM, have also been used to build

Authors’ addresses: Pu (Luke) Yi, Computer Science Department, Stanford University, 450 Jane Stanford Way, Stanford,

California, 94305, USA, lukeyi@stanford.edu; Sara Achour, Computer Science and Electrical Engineering Departments,

Stanford University, 450 Jane StanfordWay, Stanford, California, 94305, USA, sachour@stanford.edu.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART222

https://doi.org/10.1145/3622797

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-6669-6520
HTTPS://ORCID.ORG/0000-0003-3444-1544
https://doi.org/10.1145/3622797
https://orcid.org/0000-0001-6669-6520
https://orcid.org/0000-0003-3444-1544
https://doi.org/10.1145/3622797

222:2 Pu (Luke) Yi and Sara Achour

analog in-memory computing fabrics that eliminate data movement by performing computation

directlywithinmemory cells, and asmemoryunits inmonolithic systems that employ other emerging

device technologies (CNFETs) to realize extremely communication dense, next-generation hardware

platforms. These new technologies offer unprecedented benefits but have not seen broad adoption,

as they have much higher bit corruption rates than conventional hardware. These hardware errors

often arise due to intrinsic properties in the involved materials, and therefore remain a significant

problem despite investments from the devices community. [Imani et al. 2017b; Shulaker et al. 2014]

Challenges with Approximate Classical Computation. Practitioners from the hardware and

software communities have developed a range of techniques for statically and dynamically optimiz-

ing classical computations to execute reliably on error-prone hardware. [Achour and Rinard 2015;

Misailovicet al. 2014;Sharif et al. 2021]Allof thesemethodsgrapplewith twotruthsof classical approx-

imate computing: (1) certain bits are essential to the computation andmust be retained accurately (e.g.,

exponent vs. mantissa bits), (2) some compute operations (e.g., branching) need to execute accurately

to obtain a usable result. As a result, these techniques typically require computations and data to be

partitioned into precise/approximation-amenable regions, where precise data and compute are either

run separately on reliable hardware or runwith a number of protectionmechanisms (e.g., redundancy,

ECC) that guard against bit corruptions. These requirements complicate the architectural designs of

these platforms and introduce overheads into the computation. These inefficiencies and the relative

difficulty associatedwith statically propagating error through programswithout over-approximation

make it exceedingly difficult to soundly and efficiently perform computation on emerging hardware.

1.1 Hyperdimensional Computing / Vector Symbolic Architectures

Hyperdimensional Computing (HDC), or alternatively Vector Symbolic Architectures (VSA), is an

approximate computing paradigm well-matched to error-prone, emerging computing platforms.

The basic unit of data is a hypervector – a large numeric or binary vector – that distributes program

information evenly across bits/values. There are many variants or dialects of HDC; this work focuses

on the binary spatter code (BSC) variant ofHDC thatworkswith dense binaryhypervectors. [Kanerva

et al. 1997] BSC HDC offers three key computational characteristics which together enable sound

and robust approximate computing on emerging technologies:

▶ Distributed Data Representation.All hypervector bits are equally important, and all bit errors

have the same effect on the hypervector result. Therefore, a single-bit flip has the same effect on the

computed result, regardless of where it occurs in memory, or within the computational pipeline.
▶ Distance-Based Computation. Information is encoded over the relative similarity/dissimilarity

of hypervectors, where the similarity of two hypervectors is computedwith theHamming distance

metric. The Hamming distance is highly resilient to bit errors, as many bit corruptions are required

to substantially influence the calculated distance.
▶ Simple Operators. The basic HD operators are implemented with circular shift and bit-wise XOR

and majority operations. These operators are both hardware-efficient and amenable to analysis.

Incontrast, in classical computation, a singlebit error canhaveanoutsizedeffectonacomputational

result, the sensitivity of the final result to error is workload-dependent, and it is typically difficult

to statically analyze the propagation of bit errors through the programwithout over-approximation.

Applications. HD computing has enjoyed increased attention in the hardware and software re-

search communities. [Imani et al. 2019a, 2018, 2019b; Kim et al. 2020] Practitioners have devised

HD computations to build a range of data structures, including database records, graphs, trees, and

finite-state automata, [Osipov et al. 2017; Yerxa et al. 2018] and to perform a number of processing

tasks, including signal and language classification, information retrieval, workload balancing, and

analogical reasoning. [Eggimann et al. 2021; Gayler and Levy 2009; Heddes et al. 2022; Jones and

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:3

Mewhort 2007; Kanerva 2010; Karunaratne et al. 2020; Kleyko et al. 2022, 2020; Pashchenko et al.

2020; Plate 2000; Rachkovskij and Slipchenko 2012; Simpkin et al. 2019] HD computation has also

been successfully used in recent years to improve the accuracy and efficiency of edge MLmodels,

and to embed intuition about problem structure into ML training tasks. [Imani et al. 2017a; Rahimi

et al. 2016, 2018; Schlegel et al. 2021, 2022; Theiss et al. 2022]

Challenges with VSA/HDC.One drawback to HD computing is that large hypervectors are usually

required to encode information reliably. The hypervector size strongly affects the accuracy of the im-

plemented HD computation and determines the amount of information that can be reliably encoded

with the hypervector. Lower dimensional bit-vectors consume less space but potentially reduce

one’s ability to retrieve information reliably. Typically, practitioners either leave the hypervector

size unoptimized or dynamically tune the hypervector size by running Monte Carlo simulations for

each parametrization of the target computation. [Kanerva 2009, 2014, 2018; Montagna et al. 2018;

Rahimi et al. 2017] Dynamic tuning is time-consuming and has a tendency to overfit – the chosen

hypervector sizes do not generalize well when minor adjustments are made to the computation.

1.2 TheHeimOptimizer

We presentHeim, the first (to our knowledge) static analysis and optimization tool for BSC HD com-

putations. To summarize, the HDC paradigm enables robust computation on error-prone hardware,

andHeim delivers accuracy guarantees even in the presence of hardware error. Given a hardware

error model and an accuracy specification,Heim derives the smallest hypervector size that meets

the specified accuracy requirements on the target hardware platform:

▶ Analysis.Heim deploys a precise and sound static analysis that guarantees the convergence of the

accuracy of the HD computation to the desired accuracy on expectation. The analysis uses several

novel theoretical results to soundly derive the expected accuracy forHD computations (see Table 1).
▶ Hardware-Aware.Heim optimizesHDcomputations to execute accurately onhardware platforms

that use error-prone and emerging device technologies.Heim’s analysis procedure works with

a hardware error model and delivers accuracy guarantees in the presence of hardware error.
▶ Robust Optimization. TheHeim-derived parametrization is guaranteed to deliver the desired

accuracy for all HD computations captured by the accuracy specification.Heim analytically derives

important HDC program parameters, including distance thresholds and HD operation-specific

hypervector sizes, which together are used to optimize the computation.

1.3 Contributions

▶ HeimAccuracy Analysis.We present a novel accuracy analysis that employs novel theoretical

results to derive the expected accuracy for a set of BSCcomputations on an emerginghardware tech-

nology. The accuracy analysis works with an accuracy specification that supports the description

of HD computations and their associated accuracy constraints.
▶ Heim Optimizer.We present an algorithm that uses the above accuracy analysis to statically

derive thresholds and hypervector sizes that minimize resource usage for a given HD computation

while satisfying the accuracy constraints provided in theHeim accuracy specification.
▶ Evaluation.We evaluateHeim against dynamic tuning-based optimization on 25 data structures.

Given a 99% accuracy requirement,Heim-optimized computations achieve a 99.2%-100.0% median

accuracy, up to 49.5% higher than dynamic tuning, and achieve 1.15x-7.14x reductions in hypervec-

tor size compared to iso-accuracy dynamically tuned executions.Heim also finds parametrizations

30.0x-100167.4x faster than dynamic tuning-based approaches. We also useHeim to find optimized

computations at iso-accuracy for two emerging hardware technologies and find usages where the

emerging hardware imparts significant benefits over the classical HDC implementation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:4 Pu (Luke) Yi and Sara Achour

2 HYPERDIMENSIONALCOMPUTING

Hyperdimensional computing (HDC) is a highly error-resilient brain-inspired computational para-

digm. InHDC, information is encoded by computing over randomly generated vectors corresponding

to symbols (e.g., letters, colors, objects) in the application domain using binding, bundling, and per-

mutation operations. A hypervector is a numerical vectorwhichmay contain binary,modular integer,

complex, or real values depending on the HDC. Information is retrieved fromHD-encoded data by

computing the distance (38B (ℎE,ℎE ′)) between hypervectors, where hypervectorswith small distances

are similar. The distance threshold (CℎA) determines the cutoff point that separates a "small" and a

"large" distance. Because information is evenly distributed across hypervector bits, and distance cal-

culations are resilient to error, HD queries can complete successfully evenwhen bit corruptions occur.

BSCHDC. This work targets the binary spatter code (BSC) HDC variant, which works with dense

binary hypervectors. Random hypervectors are generated by sampling bits from a ? =0.5 Bernoulli

distribution, and permutation, binding, and bundling operations are implementedwith circular shifts,

bit-wise exclusive-OR (XOR), and bit-wise majority operations, respectively. The Hamming distance

38B (ℎE,ℎE ′)= 1
=

∑
8ℎE8∧ℎE

′
8 is the BSC distance measure, where = is the hypervector size. The bit-wise

majority operation computes whether there are a majority of "1" or "0" bits at each bit position, and

can be alternatively interpreted as an element-wise sum, followed by a thresholding operation.

Operators. The binding and bundling operations (ℎE⊙ℎE ′ andℎE+ℎE ′) respectively produce hyper-

vectors that are dissimilar and similar to the inputℎE ,ℎE ′ hypervectors. The permutation operation

ℎE ′ = d8 (ℎE) produces a hypervector ℎE
′ that is dissimilar to the input hypervector ℎE , where the

original hypervector can be recovered by inverting the permutation (ℎE =d−8 (ℎE
′)), where 8 is an

integer value. Generally, binding and permutation operations distribute over bundling, and for BSC

HDC, bundling/bundling are commutative and associative, and binding is invertible.

Codebooks.These operations are performed over a "codebook" of basis hypervectors, which represent

atomics in the problemdomain. Examples of codebooks include letters of the alphabet (K=26), numeri-

cal digits (K=10), graph nodes (K=# nodes), and primary colors (K=3). Each basis hypervector, or code,

in the codebook is typically randomly generated; the associated atomics (e.g., letters) are, therefore,

dissimilar fromone another. Conceptually, this dissimilarity captures the idea that atomics are distinct

– the letter A is distinct from the letter C, for example. The HD permutation, binding, and bundling

operations are then applied to encode information using these atomics. For example, bundling the

"A" and "B" basis hypervectors (ℎE =ℎE�+ℎE�) produces a basis hypervector similar to both A and B.

2.1 Data Structure/�ery Interpretation of HDComputing

AnHDcomputation canbe thought of as adata structure encoding operation that produces adata struc-

ture hypervector ds that can be queried by computing its distance froma query hypervector q. Because

hypervectors are lossy information encodings, a query against anHDdata structuremay occasionally

return an incorrect result – the accuracy of a query is the probability that a query returns the correct

result. The hypervector size and the distance thresholds together control the computation’s accuracy.

Data Structures. The bundling operation conceptually creates a set of elements where the mem-

bership of an element or subset can be tested with a distance calculation. For example, for the

ds=ℎE�+ℎE�+ℎE� ≈{�,�,�}, Themembership of a subset q=ℎE�+ℎE� ≈{�,�} is tested by computing

the distance 38B (ℎE�+ℎE�,ℎE�+ℎE�+ℎE�). If the distance falls below a distance threshold CℎA , the

set contains the subset; this is referred to as amatch. A false positive occurs when a data structure

hypervector falselymatches the query, and a false negative occurs when a data structure hypervector

falsely fails to match the query. The binding operation conceptually creates a record of elements

(ℎE�⊙ℎE� ∼ ⟨�,�⟩), where each record is only similar to othermatching records, and the permutation

operation is used to encode positional information into the HD data structure.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:5

Jack

Apple

Mary

Tennis

Banana

Likes Likes

Likes

Likes

Plays

Plays

(a) Student knowledge graph.

1 //data structure: one hypervector for each node in itemmemory

2 ds[jack] = act⊙(likes⊙(banana+apple+mary)+plays⊙tennis) //jack

3 ds[apple] = target⊙likes⊙(jack+mary) //apple

4 ds[mary] = act⊙(likes⊙apple+plays⊙tennis)+target⊙likes⊙jack //mary

5 ds[tennis] = target⊙plays⊙(jack+mary) //tennis

6 ds[banana] = target⊙likes⊙jack //banana

7 query = act⊙likes⊙apples //howmany people like apples query

8 return count(dis(query,ds[node]) <= thr[node]) //execute query on graph

(b) HDC encoding of student knowledge graph and apples query.

Fig. 1. Illustrative Example: Knowledge Graph

Several complex data structures that compose sets, sequences, and records can be built from these

basic operations. For example,ℎE�+d1 (ℎE�) builds the sequence [�,�] that can be indexed at index

1 by computing d−1 (ℎE� + d1 (ℎE�)), the ℎE� ⊙ℎE� +ℎE� ⊙ℎE� encoding builds the set of records

{⟨�,�⟩,⟨�,�⟩} that can be queried with record subsets, and theℎE�⊙d1 (ℎE�) encoding builds a tuple

⟨�,�⟩ of ordered elements, such that ⟨�,�⟩≠ ⟨�,�⟩.

ItemMemories. Complex data structures, such as graphs and databases, can be encoded through

the use of an itemmemory, a key-hypervector data store that maps identifiers to hypervector item

memory rowsℎE8 , which implements HD data structures. For example, an HD graph itemmemory

maps nodes to hypervectors, and each hypervector "value" encodes the set of edges connected to the

associated "key" node. Itemmemory-based data structures support two queries: (1) threshold-based

queries and (2)F-winner winner-take-all queries. For both queries, the distance between the query

hypervector and each itemmemory row38B (@,ℎE8) is computed. In threshold-based querying, all item

memory rows thatmatch a query hypervector@ are returned. Inwinner-take-all querying, theF item

memory rows closest to the query hypervector are returned. Threshold queries require a distance CℎA

to operate, which may be individually set for each itemmemory row, while winner-take-all queries

take no additional parameters. See Section 10 for more discussion on these two query types.

3 ILLUSTRATIVE EXAMPLE: KNOWLEDGEGRAPH

Knowledge graphs capture networks of real-world entities (objects, people, situations), and model

relationships between them. An outgoing edge indicates the originating node is acting on a target

node, and an incoming edge indicates the receiving node is the target of another node. Nodes map to

concepts (e.g., apple, mary, tennis), and edges are labeled with relations (e.g., plays, likes, hates).

HDKnowledge Graph. Figure 1b presents the HD encoding of the student knowledge graph from

Figure 1a (Lines 2-6). This encoding works with codebooks that specify the relations {likes, plays},

the interactions {act, target}, and concepts {jack, mary, banana, apple, tennis} that may appear

in the student knowledge graph. Each node’s edge information is then encoded as a hypervector

ds[node] in itemmemory.Ahypervector thatencodeseach incomingandoutgoingedge isconstructed

by binding together interaction, relation, and concept tuples (e.g., act ⊙ likes ⊙ apples). The hy-

pervector that encodes the set of edges connected to a given node is constructed by bundling (+) all of

the edge hypervectors containing the target node together. In BSC, binding distributes over bundling.

Each edge set hypervector is then stored in an itemmemory. The keys in the knowledge graph’s

itemmemory map to concepts, and the hypervectors are the constructed edge list. In this example,

the item memory hypervectors are stored in 2-bit-per-cell resistive RAM (ReRAM). This storage

medium is 2x denser than conventional binary storage but has a 2.15% chance of corrupting a bit in

memory – this error rate is collected from a real ReRAM array (Section 8). Therefore, the emerging

memory may sporadically corrupt bits at random positions in the hypervector data structure.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:6 Pu (Luke) Yi and Sara Achour

1: procedure testAcc(n,accReq,tests,nCbs,nTraces)

2: data = []

3: for q,ds,label in tests do

4: for i in range(nCbs×nTraces) do

5: itemMemDist = execMonteCarlo(q,ds,n)

6: data.append(⟨itemMemDist,label⟩)

7: dists=sort(getDists(data))

8: thrs = set((dist[i]+dist[i+1])/2 for 0...|dists|-1)

9: thr,acc = bruteSearch(thrs,data)

10: return ⟨thr, acc >= accReq ⟩

11: procedure dynTune(nMax,accReq,tests,nCbs,nTraces)

12: fn = _.n: testAcc(n,accReq,tests,nCbs,nTraces)

13: return binSearch(0,nMax,fn)

(a) Dynamic tuning algorithm

1 spec {

2 abs-data query = prod(itypes,rels,concepts);

3 abs-data ds = sum(4,prod(itypes,rels,concepts));

4 thr-query(query, ds, 1, 0.99, 0.01, 0.01); }

(b) Knowledge graph specification

1 hardware-model {

2 mem codebook = 0.00; mem item-mem = 0.0215;

3 op bind = 0.00; op bundle = 0.00; }

(c) Hardware error model

Fig. 2. Dynamic tuning algorithm andHeim specifications.

Queries.We nowwant to query the knowledge graph to answer the following question: "Howmany

students like apples?". To answer this question, we would count how many nodes have outgoing

edges with the likes relation label pointing to apple – this will be referred to as the apples query.

We want the apples query to complete with 99% accuracy, even in the presence of hardware error.

This query can be dispatched on the hypervector representation of the student knowledge graph.

We construct the apples query hypervector by binding together the relation, concept, and interaction

hypervectors together (Line 8) – this is the same encoding used for the edge in the knowledge graph.

We then determine if a node hypervector contains the query tuple by computing the Hamming dis-

tance dis(query,ds[node]) between the query hypervector and the node hypervectors in itemmem-

ory (line 10). Node hypervectorswith a distance below some node-specific distance threshold CℎA con-

tain ⟨act,likes,apples⟩ query tuple in its edge set, and the corresponding key is returned as amatch.

This query cannot be expressed as a winner-take-all query as the number of matches is unknown.

3.1 Naive�eryOptimization

We are interested in minimizing the hypervector size to reduce the memory usage while still

attaining this 99% accuracy target. Typically, this is done by dynamically tuning the size and distance

thresholds to execute the provided query with acceptable accuracy. Figure 2a presents a dynamic

tuning algorithm that finds a minimum hypervector size between zero and nMax and the associated

distance threshold that achieves a query accuracy of accReq over a test set of labelled matching/non-

matching HD queries and data structures (tests). The algorithm performs a binary search over

hypervector sizes. For each size, the algorithm executes each test query and data structure for

=�1B×=)A024B Monte Carlo trials to build up the dataset (data) of query-itemmemory distances. The

algorithm thenuses a brute-force search to find the distance threshold thatmaximizes the accuracy, or

the fraction of correctly classified samples over the constructed dataset. In total, the dynamic tuning

algorithm executes ;>6(nMax)×|tests|×nCbs×nTracesMonte Carlo trials of the computation.

Accuracy.We parameterize the dynamic tuner with a test set containing the "apples" query and

knowledge graph data structures, over 30 random codebooks, and 30 error traces – in total, 900 trials.

The dynamic tuner completes in 35.4 seconds (averaged over ten runs) and finds a hypervector size

of 117 bits and threshold of 0.402 that empirically delivers a query accuracy of 99.044% on the test

set. With these dynamically tuned parameters, we attain an 85.47x reduction in the hypervector size,

compared to theunoptimized 10,000-bit hypervector size used inprevious literature–dynamic tuning

therefore significantly reduces thememory footprint of the knowledge graph itemmemory. [Kanerva

2009, 2014, 2018; Montagna et al. 2018; Rahimi et al. 2017]

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:7

While this parameterization delivers the desired accuracy for the apples query, it does not gen-

eralize well to other knowledge graphs or queries of comparable complexity. To demonstrate this,

we randomly construct 1000 knowledge graphs containing five nodes with a maximum degree of 4,

generate five random edge queries for each graph, and then evaluate the accuracy of the edge queries

over 900 trials. Over these 5000 randomly generated data structure-query combinations, we find

that the accuracy for 0-degree nodes, 1-degree nodes, 2-degree nodes, 3-degree nodes, and 4-degree

nodes are 100.0%, 98.8%, 98.8%, 98.9%, 97.6% respectively. Notably, queries over 1-4 degree nodes fail

to meet the 99% accuracy target when the dynamically tuned parametrization is used. This issue can

be addressed by dynamically tuning over randomly generated queries and data structures; however,

doing so will drastically increase parameter tuning time.

3.2 Optimizing the Apples�erywithHeim

WithHeim, we can statically optimize the size and distance thresholds for a given HD computation

without performing any simulation.Heim delivers precise accuracy guarantees for data structure

queries that generally hold, on expectation, over different query and data structure instantiations

and can deliver these guarantees even in the presence of hardware error.

HD Specifications. Heim works with an specification of the HD computation that describes the

accuracy requirements for a set of data structure queries. Figure 2b presents aHeim specification that

verifies that all edge queries over 5-node knowledge graphs with a maximum degree of 4 achieve a

queryaccuracyofat least99%.Theapplesqueryonthestudentknowledgegraphpresented inFigure1a

is anexampleof a concretedata structurequery that adheres to this specification.Line2definesaquery

as a product of interactions (itypes), relations (rels), and concepts (concepts), and Line 3 defines a

nodehypervector in itemmemoryasabundle (sum) ofup to4edgehypervectors,whereeachedge tuple

is binding of an interaction, relation, and concept. The accuracy assertion on Line 4 requires all tuple

queriesmade to a node hypervector to return the correct result at least 99%of the time,withmaximum

falsepositive (incorrectmatch) and falsenegative (incorrectnotmatch) ratesof 1%. See supplementary

materials for more information on the analysis-amenable knowledge graph data structure.

Heim considers the effect of hardware error during optimization and works with a hardware error

model that captures the error rates in the target device. Figure 2c presents the hardware error model

for the 2 BPC ReRAM-based accelerator we are targeting in this example; this model defines the

per-bit corruption probability for data in itemmemory as 0.0215. All other operations are error-free.

Heim-Optimized Parameters.We useHeim to identify an optimal threshold and hypervector size

for the specification in Figure 2b and the hardware error model in Figure 2c. Heim completes its

analysis in 13.58 milliseconds (2606.8x faster than dynamic tuning) and returns a hypervector size

of 173 and distance thresholds of 0.4116, 0.3795, 0.3795, and 0.1744 for nodes with degrees 4, 3, 2,

and 1. TheHeim-optimized apples query attains an accuracy of 99.944%.Heim, therefore, meets the

99% accuracy target and delivers a 57.80x reduction in hypervector size over unoptimized 10,000

element vectors, reducing the number of 2 BPC ReRAM cells required to store each node hypervector

from 5,000 cells to just 87 cells. TheHeim hypervectors are 1.48x larger than the dynamically tuned

hypervector size but much more reliably deliver the desired accuracy across data structures. In

fact,Heim guarantees that the derived threshold and hypervector size will classify edge queries on

node hypervectors (with node degree ≤4) with at least 99% accuracy on expectation. We evaluate

theHeim-optimized HD computation over the random knowledge graphs and queries described in

Section 3.1 and findHeim empirically attains an accuracy of 100.0%, 100.0%, 99.9%, 99.9%, 98.9% for

0-degree, 1-degree, 2-degree, 4-degree and 5-degree nodes respectively, all close to or higher than the

target accuracy of 99%. Therefore, whileHeim’s hypervector size is larger than the dynamically tuned

hypervector size, theHeim-tuned computation more reliably meets the 99% accuracy constraint.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:8 Pu (Luke) Yi and Sara Achour

G,G ′,G ′′ ∈'40;B , E ∈!8C4A0;B , 8,:,F,<,C ∈ �=C464AB

(�G? ::= E | perm(8 ,E) | prod((�G?∗)

��G? ::= sum(8,(�G?∗) | prod(sum(8,(�G?∗)∗)

�G?A ::= (�G? |��G?

(C<C ::= thr-query(�G?A,�G?A ′,:,G,G ′,G ′′)

| wta-query(�G?A,�G?A ′,:,F,<,G,C,G ′)

| abs-data v = �G?A

(?42 ::= spec {(C<C∗}

G ∈'40;B

�$? ::= bundle | bind | perm

"!>2 ::= codebook | item-mem | query

(C<C ::= �$? = G | mem"4<!>2 = x

"3; ::= hardware-model { (C<C* }

Fig. 3. Program grammars -Heim accuracy specification language ((?42) and hardware model ("3;).

4 HEIM SPECIFICATION LANGUAGES

TheHeim accuracy specification language (?42 enables practitioners to specify the structure of HD

programs to optimize. The specification language supports the specification of abstract programs

that capture a set of HD computations. The language supports describing HD computations with

the following statements:

HDExpression. Each abs-data v = Expr statement maps an HD expression �G?A to a variable E . The

HD expression�G?A statically describes the structure of theHD computation to analyze.We break up

HDexpressions into simple ((�G?) and complex (��G?) HD expressions. A simpleHDexpression can

be, a code, a permutation of a code, where the basic permutation operator perm specifies the number

of times to apply or unapply the permutation (8), or a tuple of (permutation of) codes. A complex

HD expression is either bundle of simple expressions sum(8,(�G? ∗), or binding of several bundles

of simple expressions prod(sum(8,(�G? ∗)∗). All sum expressions specify the maximum number of

hypervectors that will be summed together (8) – this is necessary forHeim to complete its analysis.

Thresholding Query Accuracy Constraint. The thr-query(�G?A,�G?A ′,:,G,G ′,G ′′) statement im-

poses the requirement that the thresholdingquery |�G?A∩�G?A ′ | ≥: produces anaccurate resultwith

a probability of at least G . Intuitively, this formulation checks that thresholding on 38B (�G?A,�G?A ′)

can determine whether at least k elements in the query �G?A are contained within the data structure

�G?A ′ correctly with a probability of at least G . The statement also defines the maximum probability

of a false positive (G ′) and false negative (G ′′) occurrence.

Winner-take-all Query Accuracy Constraint. The wta-query(�G?A,�G?A ′,:,F,<,G,C,G ′) state-

ment imposes the requirement that aWTA query produces an accurate result with a probability of at

least G . Specifically, theWTA query has a query in the form of �G?A and< data structures in the form

of �G?A ′ in itemmemory, out of which onlyF match the query, satisfying that |�G?A∩�G?A ′ | ≥: .

The WTA query returns theF in< data structures with the smallest distances to the query. We

define the result as accuratewhen the returnedF ones are exactly theF positives. The statement also

specifies a softer constraint that theF true matches are contained within the top C lowest distances

to the query (C ≥F), with probability G ′.

4.1 Hardware ErrorModel

Heim works with a hardware error model ("3;) that describes the error rates for the basic HD

computational operators. The �$? = x statements define the per-bit error rates for the bundling

(bundle), binding (bind), and permutation (perm) operators. The"!>2 = x defines the per-bit error

rate associated with storing data in itemmemory, in codebookmemory, or the query buffer. The item

memory data storage location supports in-memory distance calculations, the query buffer stores the

query to apply to itemmemory, and the codebookmemory stores the basis vectors for the codebooks.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:9

Formulation reference description

WTA-022 ,F=1 (6) [Frady et al. 2018] WTA accuracy for exactly one winnerF=1

WTA-022 (10) Section 5.4 WTA accuracy for more than one winnerF>1

WTA-?A>1 (12) Section 5.4 probability of theF positives being in top C .

QDS I (14) [Kanerva et al. 1997] single-element sum-of-product set membership

QDS II (15) [Kleyko et al. 2016] subset sum-of-product set membership

QDS III (17) Section 6.6 single-element product-of-sum set membership

Hardware Error (20) Section 6.8 incorporation of hardware error

Table 1. Summary of Theoretical Formulations

distance(query,DS)

Pr
ob
ab
il
it
y
De
ns
it
y

threshold

(a) Threshold�ery

distance(query,DS)

Pr
ob
ab
il
it
y
De
ns
it
y

top w=5 top t=8

(b) WTA�ery

Fig. 4. Visualization of WTA/threshold query over match/no-match distance distributions. Points map to

sampled match and no-match query-item memory row distances (• and •) for a 10-element item memory,

where match/no-match distances are sampled frommatch/no-match distance distributions (■ and ■). Circled

points (◦) map to correct rowmatches for query.

5 HEIMACCURACYANALYSIS

At the heart of Heim is a novel static accuracy analysis that derives the query accuracy for threshold-

based and winner-take-all data structure queries. The analytically derived accuracy is both precise

and sound –Heim’s analysis guarantees that the query under study will converge to the computed

accuracy on expectation. This accuracy analysis works with analytical models of the query-data

structure distance distributions that are parametrized over hypervector size, the hardware error

model, and the query and data structure expressions – these models are used to analytically derive

the accuracy of each type of query. For theHeim analysis to be sound,Heim requires certainmutual

independence constraints toholdover thequery anddataset. Section5.1-5.2 overviews the relationship

between distance distributions and query accuracy, Sections 5.3-5.4 present the accuracy analysis,

and Section 6 presents the analytical distance distribution models. Table 1 summarizes the novel

and previously published theoretical results used in this analysis.

HeimOptimizer. TheHeim accuracy analysis is used by theHeim optimizer to find the minimum

hypervector size for a givenHeim specification. TheHeim optimizer returns a set of query-specific

thresholds that can be used to more accurately query from the data structure, and a query-specific

hypervector size that can be used to soundly do partial computation.Heim also returns a set of query-

specific mutual independence constraints that must hold for the above analysis to be fully sound;

these constraints can be optionally checked at runtimewith theHeimmutual independence checking

algorithm. Section 7 presents theHeim optimization algorithm, and Section 7.1 presents the algorithm

for checking that themutual independence constraints hold over concrete data structures and queries.

5.1 Intuition: Accuracy of Threshold-Based�eries

Consider the followingHeim accuracy constraint over a threshold query thr-query(q,ds,k,x,x’,x”),

where q is the queryHDexpression, ds is theHDexpressionof the rows in a data structure’s itemmem-

ory. Each itemmemory row is amatch if it contains at least k elements in the query expression, and a

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:10 Pu (Luke) Yi and Sara Achour

not match otherwise. Figure 4 presents thematch (blue) and not-match (red) query-data structure dis-

tance distributions. Each distance distribution is normally distributed, with a mean ` (@,3B,:,ℎF) that

depends on the query and data structure expressions, the number ofmatching elements, the hardware

error model, and a standard deviation f (` (@,3B,:),=) is a function of the mean and hypervector size.

Example. In Figure 4, the points on the match and not-match distributions correspond to the query-

data structure distances for a ten-element itemmemory with five match rows (blue, circled) and five

not-match rows (red), given a sampled set of codebooks and error trace. Each point on the distance

distribution corresponds to a distance between the query hypervector and a row hypervector in

item memory. In threshold-based querying, points to the left of the distance threshold (grey line)

are returned as a match, and points to the right are returned as not a match. The above example

correctly returns four of five matches and incorrectly returns one not-matching distance as a match

– corresponding to 1 false positive and one false negative. The accuracy of the threshold query

corresponds to the probability of correctly classifying each row in the data structure’s itemmemory.

In the above example, 8/10 itemmemory rows are correctly classified, yielding an 80% accuracy.

Expected Accuracy. The associated match and not-match distributions can be analyzed to compute

the expected accuracy. The overlapping area between the match and not-match distributions is the

probability that a query is erroneouslymisclassified. Because the distance distributions overlap, there

is ambiguity onwhether the querymatches a given data structure row. The accuracy is, therefore, the

probability that a distance is sampled from the non-overlapping regions of the match and not-match

distributions. The false positive rate is the portion of the overlapping area left of the chosen threshold,

and the false negative rate is the portion of the overlapping area to the right of the selected threshold.

The degree of separation between the two distributions depends on how the distributions’ mean

and standard deviations are parameterized.

5.2 Intuition: Accuracy ofWinner-Take-All�eries

Consider a winner-take-all (WTA) query accuracy constraint wta-query(q,ds,k,w,m,x,t,x’)with w

winners for an m-row itemmemory. The q, ds, and k arguments correspond to the query and data struc-

ture expressions and the number of query elements that must be contained in an itemmemory row

to be considered a match. In w-winnerWTA queries, there are precisely w true matches sampled from

the match distribution. We note (1) that within matches sampled from the match distribution, there

is no order to sampled matches, and (2) WTA queries are not used to query not-matching elements.

Example. Figure 4b shows a 5-winner WTA query over a ten-element item memory. The above

accuracy constraint requires all true winnersl (circled) to be contained within the top five lowest

distances (left of top w=5 line) with probability x, and all true winnersl to be contained within the

t=8 lowest distances (left of top t=8 line) with probability x’. Intuitively, the former requirement

requires only rows that are true matches to be returned for a WTA query with probability x. The

latter requirement is a soft requirement that ensures all true matches are contained within the top t

lowest distances with probability x’, where C ≥: . The above figure violates the hard constraint since

the top 5 lowest distances contain one not-matching row, and satisfies the soft constraint since all

true matches are in the top 8 lowest distances.

Expected Accuracy.Next, we provide an intuitive explanation of the expected accuracy. First, we

drawF distances from the match distribution and<−F distances from the not-match distribution.

Intuitively, the expected accuracy of a w-winnerWTA query corresponds to the probability that all w

matching distances are to the left of all m-w not-matching distances. The probability the soft accuracy

requirement is satisfied corresponds to the probability that the top t distances contain all wmatching

distances. TheWTA distance distributions have the same ` and f parameters as the threshold-based

distance distributions.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:11

5.3 Threshold-Based�ery Accuracy Analysis (thrAccAnalysis)

Givenahypervector size=, ahardwarespecificationℎF , anda thresholdqueryconstraintthr-query(q,

ds, k, reqAcc, reqFp, reqFn), the analysis queries the analytical distance modelM(@,3B,:,=,ℎF) to

retrieve the corresponding match and not-match distance distributions Φ" ,Φ#" and the associated

independence constraint 8=34?�BCA .Heim finds the optimal distance threshold CℎA>?C maximizing

022 for the given match (Φ") and not-match distributions (Φ#") and upper bounds on false negative

A4@�= and false positive A4@�? rates. The analysis returns the computed threshold, the independence

constraint, and whether the derived threshold satisfies the provided accuracy requirements.

OptimalThresholdDerivation. For a CℎA , denoting 5 ? and 5 = as the false positive and false negative

rates, we have (��� (5) (G) is the cumulative distribution function of distribution 5 evaluated on G)

5 ==1−��� (Φ") (CℎA),5 ? =��� (Φ#") (CℎA) (1)

and with the increase of CℎA , 5 = decreases and 5 ? increases. Therefore, requirements 5 ? ≤A42�? and

5 =≤A42�= can be translated into bounds on CℎA .

��� (Φ")−1 (1−A4@�=) =CℎA; ≤ CℎA ≤ CℎAℎ =��� (Φ#")−1 (A4@�?) (2)

If CℎA; > CℎAℎ , no CℎA satisfies the requirements and we set BD224BB to False. Otherwise, we aim to

maximize the accuracy 022 =1− 1
2
(5 ?+ 5 =) (assuming balanced positive and negative queries).

max
CℎA; ≤CℎA≤CℎAℎ

022 =
1

2
(1+��� (Φ") (CℎA) −��� (Φ#") (CℎA)) (3)

We take the derivative of022 as follows (%�� (5) (G) is the probability density function of distribution

5 evaluated on G)
m022

mCℎA
=
1

2
(%�� (Φ") (CℎA) −%�� (Φ#") (CℎA)) (4)

We have m022
mCℎA

>0when `" < CℎA <G , and m022
mCℎA

<0when G < CℎA < `#" , where G is the intersection of

twoPDFcurves in range `" <G < `#" (Figure 4). SolvingG is trivial as%�� (Φ") (G)=%�� (Φ#") (G)

is a quadratic equation ofG . Therefore, the optimal CℎA is the point closest toG in range [CℎA; ,CℎAℎ], i.e.,

CℎA>?C =max(CℎA; ,min(CℎAℎ,G)) (5)

The analysis reports a satisfying threshold was found iff CℎA>?C achieves the accuracy requirement

and returns the optimal threshold and the independence constraint 8=34?�BCA on success.

5.4 Winner-Take-All�ery Accuracy Analysis (wtaAccAnalysis)

Given a hypervector size =, a hardware specificationℎF , and aWTA query constraint, wta-query(q,

ds, k, w, m, x, t, x’), the analysis queries the analytical distance model M(@,3B,:,=,ℎF) to

retrieve the corresponding match and not-match distance distributions Φ" ,Φ#" and the associated

independence constraint 8=34?�BCA . The algorithm computes the expected hard and soft accuracies

(022 and ?A>1) from the Φ" ,Φ#" distance distributions and theF ,<, and C WTA query parameters.

The expected accuracy is then compared with the provided accuracy requirement (022 ≥G , ?A>1 ≥G ′)

to determine whether the hypervector size is sufficiently large. On success, the algorithm returns

the independence constraint 8=34?�BCA .

Winner-Take-All Query Accuracy.We present how the hard accuracy (022) and soft accuracy

(?A>1) are computed in this section. We start with 022 . We denote the WTA query accuracy as

022 (F,<,Φ" ,Φ#"). Frady et al. [Frady et al. 2018] developed a perception theory that gives the

expectedWTA accuracy whenF =1 as follows

022 (1,<,Φ" ,Φ#") =

∫ ∞

−∞
%�� (Φ") (G) (1−��� (Φ#") (G))<−13G (6)

An intuitive explanation of the above equation is that when the one positive vector has distance G to

3B (with probability density %�� (Φ") (G)), the result is accurate iff the other<−1 distractor vectors

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:12 Pu (Luke) Yi and Sara Achour

all have a distance greater than G (each independently with probability 1−��� (Φ#") (G)), and the

result is the integral of it for all possible G over distribution Φ" .

Accuracy withMultipleWinners.We extend the theory to handle the general cases whenF >1.

Following the intuition of (6), if we have %�� ("�-F,Φ"
), the probability density function of the

maximum of distances ofF positive vectors, then

022 (F,<,Φ" ,Φ#") =

∫ ∞

−∞
%�� ("�-F,Φ") (G) (1−��� (Φ#") (G))<−F3G (7)

because the results are accurate (i.e., the returned F vectors are all positives) iff the maximum

distance of theF positives is no greater than the minimum of the<−F negatives. We then derive

%�� ("�-F,Φ"
). First, we have

��� ("�-F,Φ") (G) =��� (Φ")F (G) (8)

because"�-F,Φ"
≤ G iff allF positive distances are no greater than G , each independently with

probability��� (Φ") (G). Then, with the relation of��� and %�� and the chain rule, we have

%�� ("�-F,Φ") (G) =��� ("�-F,Φ") ′ (G) = (��� (Φ")F (G)) ′=F��� (Φ")F−1 (G) ·%�� (Φ") (G) (9)

With (9), we now conclude that

022 (F,<,Φ" ,Φ#") =

∫ ∞

−∞
F��� (Φ")F−1 (G)%�� (Φ") (G) (1−��� (Φ#") (G))<−F3G (10)

Analysis of Soft Accuracy Constraint. Besides specifying the desired accuracy,Heim also enables

users to specify soft accuracy constraint forWTAqueries, with the following form:with probabilityG ′

the distances of theF positives are all in the top-C smallest. In otherwords, there can be atmost C−F in

theother<−F vectors in the codebook thathaveadistance smaller thananypositive,withprobability

G ′. To formulate this new constraint, we denote ?A>1 (F,<,C,Φ" ,Φ#") as the probability thatF pos-

itives all have at least top-C smallest distances. To calculate ?A>1 (F,<,C,Φ" ,Φ#"), we enumerate the

number of negatives that have a smaller distance than any positives (8), which should be nomore than

C−F . For each 8 , and"�-F,Φ"
=G , the probability is that exactly 8 negatives have smaller distances

than G , each independently with probability��� (Φ#") (G), and the other<−F−8 negatives have

greater distances than G , each independently with probability 1−��� (Φ#") (G). Therefore, we have

?A>1 (F,<,C,Φ" ,Φ#") =

C−F∑
8=0

(
<−F

8

)
·

∫ ∞

−∞
%�� ("�-F,Φ")��� (Φ#")8 (G) (1−��� (Φ#") (G))<−F−83G (11)

Substituting %�� ("�-F,Φ"
) with (9), we have

?A>1 (F,<,C,Φ" ,Φ#") =∑C−F
8=0

(<−F
8

)
·
∫ ∞

−∞
F��� (Φ")F−1 (G)%�� (Φ") (G)��� (Φ#")8 (G) (1−��� (Φ#") (G))<−F−83G

(12)

6 ANALYTICALMODEL (")

TheHeim analytical model derives the match distribution parameters ⟨`" ,f" ⟩, the not-match dis-

tribution parameters ⟨`#" ,f#" ⟩ for the provided query, and the mutual independence constraint

8=34?�BCA that must hold for the analysis to be valid:

⟨"40=�8BC" ,"40=�8BC#" ,8=34?�BCA ⟩ = &�((@,3B,:)

⟨`" ,f" ⟩ =)>#>A<0; (�F�AA (ℎF,"40=�8BC"),=)

⟨`#" ,f#" ⟩ =)>#>A<0; (�F�AA (ℎF,"40=�8BC#"),=)

Sections 6.2-6.6 describes how the match and not-match mean distances are derived from the

query and data structure (&�(), Section 6.7 describes how hardware error is incorporated into the

error-free mean distance (�F�AA), and Section 6.8 derives the standard deviation from the mean of

the same distance distribution ()>#>A<0;).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:13

Formalization of HD Computation. A code 2 is a randomly generated hypervector that maps to a

distinct atomic symbol (e.g., a letter).A code set� is a vector that is the superposition (bundle, +) of

a set of codes. We denote 2 ∈� if 2 is a code in the set, and� = {21,22,...,2<} if� is a superposition of

codes 21+22+ ...+2< . We denote a code tuple C as a product (⊙) of two or more codes and create code

tuples by binding codes, e.g., 2⊙2′=C . A code tuple set) is a set of code tuples. The analysis works

with codes, code tuples, code sets, and code tuple sets. All permutation operators over codes d: (2)

are represented as distinct codes 2′ in our formalization. This transformation can be applied because

the dependency of 2 and d: (2) does not affect distance computation.

6.1 Mutual Independence

TheHeim analytical model assumes that both the data structure and query containmutually indepen-

dent codes or tuples. In the analytical model,Heim identifies the mutual independence constraints

that must hold. These mutual independence constraints are dynamically checked when construct-

ing the data structure and query. The specific mutual independence constraint depends on the

type of analytical procedure used to perform the analysis. We next present two types of mutual

independence constraints. We discuss the implications of the mutual independence constraint in

Section 6.10, present an efficient dynamic independence checker and prove the equivalence ofmutual

independence constraints to statistical independence in Section 7.1.

Independent SetWedefine independent sets as a set of codes or tuples that aremutually independent.

Formally, given any HD expression, it can be flattened into the superposition (set) of code tuples

) = {C1,C2,...,C; } (4G?A =
∑;

8=1C8).) is an independent set if and only if for any C8 ,1≤ 8 ≤ ; , there exists

no subset) ′ ⊂) other than the subset {C8 } that contains only C8 , where C8 is the binding of tuples in

) ′ (i.e., C8 =⊙C ∈) ′C). For example, 4G?A = (0+1) ⊙2+0⊙1 =0⊙2+1⊙2+0⊙1 is not an independent

set, because 0⊙1= (0⊙2)⊙ (1⊙2). Recalling a tuple in an independent tuple set is similar to recalling

a code from a simple code set (they fall into the same QDS type, see Section 6.4).

Independent Product.A product of sets 4G?A =⊙;
8=1B8 is called an independent product if and only

if the multiplicant sets are disjoint and the sum of all the multiplicant sets
∑;

8=1B8 is an independent

set. For example, (0+1)⊙ (2+3) is an independent product because these two sets are disjoint and

0,1,2,3 are mutually independent. (0⊙1+0⊙2)⊙ (1⊙2+1⊙3) is not an independent product because

0⊙1,0⊙2,1⊙2,1⊙3 are not mutually independent, even though the twomultiplicant sets are both

independent sets. Note that a product of sets can also be flattened into a set of tuples, and the flattened

set is usually not independent, e.g., (0+1) ⊙ (2+3) =0⊙2+0⊙3+1⊙2+1⊙3 is not an independent

set because (1⊙2)⊙ (1⊙3)⊙ (0⊙3)=0⊙2 .

6.2 �ery-Data Structure (QDS) Predicates

We introduce the concept of a query-data structure (QDS) predicate, a unifying formalization that

enables Heim to implement an analysis that both leverages theoretical results from previous lit-

erature [Kleyko et al. 2022, 2021], and the novel derivations (Section 6.6). A query-data structure

predicate is a set membership expression with the formulation |@∩3B | ≥: for which the symbolic

match and not-match mean distances have been analytically derived. TheHeim analysis supports

three forms of QDS predicates (tuple C and tuple set) can also be simply code 2 and code set�):

|{C}∩) | ≥ 1 Type I, Single Element, Independent Tuple-Set [Section 6.4]

|)∩) ′ | ≥: Type II, Subset, Independent Tuple-Set [Section 6.5]

|{C}∩⊙8)8 | ≥ 1 Type III, Single Element, Independent Product [Section 6.6]

Type I QDS predicates test if a code/tuple is in an independent code/tuple set, type II QDS pred-

icates test if : elements of a code/tuple set is a subset of an independent code/tuple set, and type

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:14 Pu (Luke) Yi and Sara Achour

III predicates test if a tuple is in an independent product. Each QDS type is associated with an

independence constraint on the data structures. Type I QDS can be seen as a special case of type II

QDS, but it is listed as a separate QDS as it is most frequently used. Note that these 3 QDS predicates

systematically cover all cases when the data structure is independent, except for the subset query

in the independent product. Subsets of independent products may have dependent tuples, which

are theoretically challenging [Clarkson et al. 2023]. This kind of queries are rarely used in data

structures [Kleyko et al. 2022, 2021]. We leave incorporating this kind of queries as future work.

QDS Classification.Given a query and data structure,Heim classifies the query into 3 supported

QDS predicates by inspecting the data structure and the query expression form. If the data structure

is in the form of product of sums (bound tuple sets), then it must be a type III query and the query

must be a tuple. Otherwise, the data structure must be an independent code/tuple set, in the form

of sum or products (bundle of code tuples). Then if the query is a code set or code tuple set, it must

be a Type II query. If the query is a code or code tuple, then it must be a Type I query.

Mutual Independence Constraints.Depending on the QDS Type,Heim returns a mutual indepen-

dence constraint that must hold over the data structure for the corresponding analysis to be valid. For

sum-of-product formed data structure 4G?A , the independence constraints 8=34?�BCA =8B4C (expr)

requires that 4G?A is an independent set. For product-of-sum formed data structure 4G?A , the inde-

pendence constraint 8=34?�BCA =8?A>3D2C (expr) requires that 4G?A is an independent product. The

definitions of independent set and product are in Section 6.1.

6.3 Most CommonNot-Match Distribution - Independent Vectors

We start with the simplest and the most commonly used not-match distribution - the distance distri-

bution between two independent/unrelated vectors 4G?A1 and 4G?A2. We denote the mean distance

between two vectors 4G?A1 and 4G?A2 as" (4G?A1,4G?A2) = � [38B (4G?A1,4G?A2)]. In the following

analysis, we assume all the code sets and code tuple sets are of odd size. The reason is that when

bundling even number of vectors, the common practice is to add one more randomly generated

vector as an operator to prevent the potential ties for majority [Kleyko et al. 2021].

Because Hamming distance is the average distance across all vector dimensions, themean distance

between two vectors is then the probability of them to differ in any one dimension. Since no correla-

tion exists between two independent vectors, each dimension of one is equally likely (with probability

0.5) to be 0/1 (same/different) from the perspective of the other. The mean distance is therefore:

" (4G?A1,4G?A2) =
1

2
,∀ independent 4G?A1,4G?A2 (13)

6.4 Type I (Single Element - Independent Set) Analytical Model

In this QDS type, the query is a code 2/tuple C and the data structure is a code set�/tuple set) . Since

the distance distributions in this QDS are the same for |{2}∩� | ≥1 or |{C}∩) | ≥ 1, we describe the

|{2}∩� | ≥ 1 case. The query asks whether 2 ∈� . Suppose |� |=<. In the not-match case |{2}∩� |<1,

i.e., 2 ∉� , the mean distance is (13) as the two vectors have no correlation. The mean distance of the

match case 2 ∈� has been derived by Kanerva [Kanerva et al. 1997]:

" ({21},{21,22,...,2< }) =
1

2
−

(<−1
<−1
2

)
2<

(14)

For Type I QDS queries, equations (14) and (13) are the match mean distance"40=�8BC" , and

not-match mean distance ("40=�8BC#") respectively. The independence constraint (8=34?�BCA) for

Type I queries requires all codes be mutually independent. (8B4C{21,22,...,2<})

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:15

6.5 Type II (Subset - Independent Set) Analytical Model

QDS Type II queries are a generalization of Type I QDS. In this QDS type, the query is a code set

�/tuple set) , and the data structure is a code set�′/tuple set) ′. Again, in this QDS type, the distance

distributions are the same for |�∩�′ | ≥: or |) ∩) ′ | ≥: , we describe the |�∩�′ | ≥: case. Assume

�′
= {21,22,...,2<},� = {21,22,...,2=,2

′
1,2

′
2,...,2

′
? } has ; (; ≤<) codes 21,22,...,2; also in�

′ and the ? other

codes 2′1,2
′
2,...,2

′
? not in�

′. The mean distance of� and�′ in this case has been derived by Kleyko

et al. [Kleyko et al. 2016]:

" ({21,22,...,2; ,2
′
1,2

′
2,...,2

′
? },{21,22,...,2< }) =1−

1

2?+<−1

min(
;+?−1

2 ,<−1
2)∑

8=0

(
;

8

) ;+?−1
2 −8∑
9=0

(
?

9

) <−1
2 −8∑
:=0

(
<−;

:

)
(15)

For Type II QDS queries, equation (15) implements the match mean distance ("40=�8BC") when

? =: , and the not-match mean distance ("40=�8BC#") when ? =:−1. The Type II independence

constraint (8=34?�BCA) for Type II queries requires both subset and set codes bemutually independent

(8B4C{21,22,...,2<}∧8B4C{21,22,...,2; ,2
′
1,2

′
2,...,2

′
? }).

6.6 Type III (Tuple-Set) Analytical Model

In this QDS type, the query vector is a code tuple C and the data-structure vector is a product-of-sum

formed code tuple set) =⊙F
8=1)8 , i.e.,) is a binding of several code tuple sets. We derive for this QDS

type because binding code sets is a common operation used in constructing data structures, e.g.,

analogical database [Kanerva 2010], finite-state-automata [Pashchenko et al. 2020]. Although) is

also a tuple set (it can be flattened to sum-of-product form), this QDS type differs from type I in that

the tuples in) have dependencies, while QDS type I assumes independence of tuples in the set. For

example, consider) = (21+22)⊙ (23+24)=21⊙23+21⊙24+22⊙23+22⊙24. The first tuple 21⊙23 is the

binding of the other three. The dependencies make the distance distributions different.

Since this analysis requires that) =⊙F
8=1)8 is an independent product (Section 6.1), enabling us

to view tuples in ∪1≤8≤F)8 as independent codes, in the following analysis we assume) =⊙F
8=1�8 ,

i.e.) is a product of code sets, and the results generalize to the) =⊙F
8=1)8 case. We first consider the

simple case where) =�⊙�′ is the product of two code sets. Assume� = {21,22,...,2; } is of size ; and

�′
= {2′1,2

′
2,...,2

′
<} is of size<. The not-match case is |{C}∩) |<1, i.e., C ∉) , then the two independent

vectors have mean distance (13). Otherwise, suppose C =21⊙2
′
1, we derive that:

" (21⊙2
′
1,{21,22,...,2; }⊙ {2′1,2

′
2,...,2

′
< }) =

1

2;+<−2

©
«
;−1
2∑

8=0

(
; −1

8

)ª®®
¬
©
«
<−3
2∑

8=0

(
<−1

8

)ª®®
¬
+
©
«
;−3
2∑

8=0

(
; −1

8

)ª®®
¬
©
«
<−1
2∑

8=0

(
<−1

8

)ª®®
¬

(16)

The derivation is as follows. Since binding is commutative, we have:

38B (21⊙2
′
1,{21,22,...,2; }⊙ {2′1,2

′
2,...,2

′
< }) =

1

=
| (21⊙2

′
1) ⊙ ({21,22,...,2; }⊙ {2′1,2

′
2,...,2

′
< }) |

=
1

=
| (21⊙{21,22,...,2; }) ⊙ (2′1⊙{2′1,2

′
2,...,2

′
< }) |

=38B (21⊙�1,2
′
1⊙�

′
1)

Therefore, for one dimension of C and) to differ, either in the dimension 21 and� are the same

while 2′1 and�
′ differ, or the 2′1 and�

′ are the same while 21 and� differ. The probability of 21 and

� to be the same in a dimension is 1
2;−1

∑ ;−1
2

8=0

(;−1
8

)
because it requires less than half (at most ;−1

2
) of

22,23,...,2; to differ from 21 in the dimension, and the number of possible choices satisfying this is∑ ;−1
2

8=0

(;−1
8

)
and there are 2;−1 choices for 22,23,...,2; in total. For 21 and� to be different in a dimension,

there has to be at most ;−3
2

of 22,23, ... ,2= to be the same as 21 in the dimension, with probability

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:16 Pu (Luke) Yi and Sara Achour

1
2;−1

∑ ;−3
2

8=0

(;−1
8

)
. By symmetry, we also get the probability for 2′1 and�

′ to be the same or differ in one

dimension. Combining them together gives (16). Note that the computation of (16) and (15) can be

sped up by pre-computing the binomial coefficients and prefix sums of themwith Pascal’s triangle.

More generally,) can be the binding ofF,∀F ≥ 2 sets. Assume) =⊙F
8=1�8 , and�8 = {281,282,...,28;8 }

is a code set of size ;8 . In this general case, we have:

" (⊙F
8=1281,⊙

F
8=1{281,282,...,28;8 }) =

1

2
∑F
8=1

;8−F

∑
∑F
8=1

48 is odd

F∏
9=1

©
«

;8 −1
2 −48∑
:=0

(
;8 −1

:

)ª®®
¬

(17)

The derivation is similar to (16). By commutativity of binding, we have:

1

=
| (⊙F

8=1281) ⊙ (⊙F
8=1{281,282,...,28;8 }) | =

1

=
| ⊙F

8=1 (281⊙{281,282,...,28;8 }) |

Therefore, denoting 48 as the value of one dimension of�81⊙{281,282,...,28;8 }) (0 or 1), for C⊙) to be

1 in the dimension, odd number of 48s should be 1, i.e.,
∑F

8=148 is odd. The probability for each 48 to be

0 or 1 has been derived for (16). Adding the probability of all the independent cases gives (17). Note

that for largeF , (17) is non-trivial to compute, as there are exponential number of cases where
∑F

8=148
is odd. However, common HDC computations do not involve binding of more than 2 sets. We leave

the problem of computing (17) more efficiently to future work. For Type III QDS queries, equation

(17), or (16) whenF =2 computes the match mean distance ("40=�8BC"). Equation (13) computes

the not-match mean distance ("40=�8BC#"). The mutual independence constraint (8=34?�BCA) for

this QDS query is 8?A>3D2C (⊙F
8=1{281,282,...,28;8 }).

6.7 Hardware Error-AwareMeanDistanceModel (�F�AA (ℎF,"40=�8BC))

HDC is a suitable computing paradigm for emerging hardware platforms because it is highly resilient

against noises in them [Halawani et al. 2021; Imani et al. 2017b, 2019c; Karunaratne et al. 2020;

Poduval et al. 2021].Heim incorporates the noise present in hardware, which works simultaneously

for all the distance distributions above. We consider the bit-flip error model, where the probability

of each bit in hyper-vectors to flip is ? . Bit flips change the mean distance between two vectors – we

denote" ′ (4G?A1,4G?A2) as the mean distance of two vectors considering possible bit flips:

" ′ (4G?A1,4G?A2) = (?2+ (1−?)2)" (4G?A1,4G?A2) +2? (1−?) (1−" (4G?A1,4G?A2)) (18)

The derivation is as follows." (4G?A1,4G?A2) is the probability of two vectors to be the same in one

dimension, and" ′ (4G?A1,4G?A2) is the probability considering bit flips. There are two cases where

they are the same in one dimension with possible bit flips. First, they can be the same before possible

bit flips with probability" (4G?A1,4G?A2), and then two vectors either both have a bit flip, or both

have no bit flip in the dimension, with probability ?2+(1−?)2. Second, they differ before possible

bit flips with probability 1−" (4G?A1,4G?A2), and a bit flip occurs only to one of the two vectors in

this dimension, with probability 2? (1−?).

Hardware Errors Increase the Expected Distance Between Vectors. In all cases we consider,
" (4G?A1,4G?A2) ≤

1
2
. The maximum" (4G?A1,4G?A2) is

1
2
when 4G?A1 and 4G?A2 are unrelated, as

shown in (13), and relatedness of vectors makes their mean distance smaller. We show that possible
bit flips increase the mean distances between vectors.

" ′ (4G?A1,4G?A2) −" (4G?A1,4G?A2) =2? (1−?) (1−2" (4G?A1,4G?A2)) ≥ 0 (19)

Larger mean distance means closer to distribution of unrelated vector, implying loss of relation

information encoded in the hypervectors. The implication is that hardware noise decreases the infor-

mation resolution, which is intuitive. We note that information loss increases with ? in a reasonable

noise range, as in (19) 2? (1−?) increases monotonically for 0<? <0.5. This enables us to use a upper

bound of ? in our analysis and deliver a sound accuracy guarantee.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:17

Bit-Flip Probability.We derive the bit flip error probability from the hardware specificationℎF . As

a standard practice, raw bit flip error rate is commonly used to characterize hardware noises. [Grossi

et al. 2019; Le et al. 2021; Li et al. 2016] Given the hypervector operators and memory locations

>? ∈$? = {bind, bundle, codebook, item_mem, query} from the hardware specification, we denote the

error of an operator as 4AA (op). We can compute the ? as follows:

? = 1− [
∏

>?∈$?

(1−4AA (op))]

? captures the probability of at least one bit flip happens in certain operator or memory location.

Note that ? is a probability upper bound of a bit flip occurs in query or data structure during distance

calculations, and using ? delivers sound accuracy analysis as the information loss increases with

? in a reasonable range 0<? <0.5 (shown in (19)).

6.8 Correspondance betweenMeanDistance andDistance Distributions ()>#>A<0;)

Given a mean distance" ′ (4G?A1,4G?A2) considering bit flips and hypervector size =, we can derive
the standard deviation to get the corresponding normal distribution # (`,f). Denote G as the value
of one dimension in 4G?A1⊙4G?A2. Note that 38B (4G?A1,4G?A2) =

1
=
|4G?A1⊙4G?A2 |. Since G is either

0 or 1, the following holds:

� [G2]=� [G]=" ′ (4G?A1,4G?A2),+0A [G]=� [G2] −�2 [G]=" ′ (4G?A1,4G?A2) (1−"
′ (4G?A1,4G?A2))

Since all = dimensions in 4G?A1⊙4G?A2 are independent and symmetric, we have

+0A [38B (4G?A1,4G?A2)]=
1

=
+0A [G]=

1

=
" ′ (4G?A1,4G?A2) (1−"

′ (4G?A1,4G?A2))

To sum up, the distance distribution is determined by the mean distance and hypervector size =.

38B (4G?A1,4G?A2) ∼#

(
" ′ (4G?A1,4G?A2),

√
1

=
" ′ (4G?A1,4G?A2) (1−" ′ (4G?A1,4G?A2))

)
(20)

6.9 Discussion onModel Simplifications

Use of Normal Distributions.We next justify the use of a normal distributions to model match and

not-match distances. Recall, the distance metric is the Hamming distance, essentially the average

distance in all dimensions. Since all the dimensions are symmetric, the distance of each dimension

follows the same distribution. Therefore, the distance is the average of many i.i.d. variables. Fur-

thermore, the hypervectors are long in HD computation, meaning that the number of i.i.d. variables

averaged is large. By the central limit theorem, the distance distributions can bewell approximated by

normal distributions. In fact, the Kolmogorov–Smirnov difference (supremum of absolute distance)

of the cumulative distribution functions (CDF) of the binomial distribution and its corresponding

normal distribution is bounded by Ω(=− 1
2) [Nagaev and Chebotarev 2011]. Approximation with

normal distributions is also a standard practice by theoreticians in this field [Frady et al. 2018], andwe

note that using binomial distributions to model hypervector distances is computationally expensive

(costly to compute PDF and CDF, compared with normal distributions). Therefore, we view the

distance distributions as normally distributed with a standard deviation and mean that both depend

on the hypervector dimension, query and data structure sizes, and bit error probability.

Elimination of Permutation Operations. Because each bit of a code 2 is independently randomly

generated, each bit of 2 and the corresponding bit of d: (2) are independent, and thus the distance

distribution between 2 and permutations of it d: (2) are exactly the same as that of two independently

generated codes, as in (13), unless : is equal to = (number of dimensions) or multiple of = times.

Therefore, we may treat permuted codes as an independent code of the original codes.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:18 Pu (Luke) Yi and Sara Achour

1: procedure optimize(hwModel,heimSpec,maxN)

2: optDim = 0, queryParams = {}

3: for queryCstr in getConstraints(heimSpec) do

4: match queryCstr do

5: case queryCstr is threshold-query

6: success,indepCstr,minDim,thrs = thrAccAnalysis.binsearch(hw,0,maxN,queryCstr)

7: queryParams = queryParams ∪ ⟨queryCstr,indepCstr,minDim,thrs⟩

8: case queryCstr is wta-query

9: success,indepCstr,minDim =wtaAccAnalysis.binsearch(hw,0,maxN,queryCstr)

10: queryParams = queryParams∪ ⟨queryCstr,indepCstr,minDim,[]⟩

11: optDim = max(optDim,minDim))

12: assert(success, "failed to find size that satisfies query accuracy requirements")

13: return ⟨optDim,queryParams⟩

Fig. 5. Heim accuracy analysis

6.10 Discussion onMutual Independence

Heim requires the HDC data structure and query to satisfy mutual independence constraints for

the analysis to hold. We show that hypervectors that satisfy mutual independence can represent set,

knowledge graph, analogical database, and NFA (see supplementary materials). Besides, a number

of data structures, including stacks, sequences, and 2D images can be also be represented. These

data structures are useful for signal and language classification, information retrieval, workload

balancing, and analogical reasoningworkloads. [Kleyko et al. 2021] In data structures with correlated

information, independence can be induced by partitioning the data structure across multiple hyper-

vectors, where each hypervector encodes mutually independent elements. Because hypervector size

linearly increases with the number of stored elements (Figure 9a), the independent sub-hypervectors

take up almost the same amount of space.We note this technique does not work well for applications

where information loss induced by the bundling operation is a feature, such as feature encoding for

machine learning applications, and cannot be used on queries with correlated elements.

Correlated Data Structures. The analysis of models with correlation is known to be hard and is

an open problem in the HDC community. [Clarkson et al. 2023] This work establishes a core HDC

analysis that is precise and sound. In the future, the analysis can be extended to directly support data

structures that have correlations – these extensions would likely need to use overapproximations or

use empirically derived information, andwill not deliver the same guarantees asHeim’s core analysis.

Example. It is possible to implement data structures with correlations and satisfyHeim’s mutual

independence constraints. Consider the edge set {0⊙1,0⊙2,0⊙3,1⊙3,2⊙3} for a 4-node graph. If we

encode this set as one vector� =0⊙1+0⊙2+0⊙3+1⊙3+2⊙3 , the expected distance of vectors of�

and 0⊙1 is 1
2
(obtained by enumerating all 24 value combinations), totally indistinguishable from the

distanceof two independentvectors, although0⊙1 is amemberof the set. In this case, no thresholdcan

havea>50%accuracy (randomguessing).However, onecandecomposeadependent set intoanumber

of independent sets, each stored in one vector. Therefore, instead of storing the graph as a set of all

edges� ,wecanstore the setof incident edgesof eachnodeasonevector, similar toadjacency lists.This

way, each vector is amutually independent set, and a query falls into theQDS I predicate (Section 6.4).

7 HEIMOPTIMIZATION FRAMEWORK

Figure 5 presents the Heim optimization algorithm. The optimizer takes a hardware error spec-

ification (hwModel), a Heim specification (heimSpec), and a maximum hypervector size (maxN) as

input, and returns both the smallest hypervector size that satisfies all accuracy constraints (optDim),

query-optimized collection of hypervector sizes, independence constraints, and distance thresholds

(queryParams) (line 13).Heim iterates over each query accuracy constraint in theHeim specification,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:19

and derives the minimum hypervector size minDim required for the query, the mutual independence

constraints indepCstr that must hold for the analysis to be sound, and a set of distance thresh-

olds to use for threshold-based queries thr (lines 6-7, 9-10). The wtaAccAnalysis.binsearch and

thrAccAnalysis.binsearch routines derive the minimum hypervector size minDim and associated

thresholds and independence constraints for the given query by performing a binary search over

hypervector sizes 0..maxN and invoking the appropriate accuracy analysis for each candidate size. The

final hypervector size returned by is the maximum required dimension across all queries. TheHeim

returns early with an error if the accuracy analysis fails to find an appropriate size for any one query.

7.1 Dynamic Independence Checker

Heim offers an optional dynamic checking algorithm that validates the concrete data structure and

query hypervectors thatmeet all independence constraints associatedwith the selected query. The in-

dependence checker helps users build data structures that satisfyHeim’s independence requirements

and can be disabled if the user is sure these requirements aremet. The algorithm tests if a concreteHD

expression containsmutually independent tuples or codes. Intuitively, a set of elements is mutually

independent if the existenceof each set element doesnot dependon the existenceof other set elements.

Algorithm.We present an efficient dynamic checking algorithm for validating the mutual indepen-

dence of products and sets of tuples. Since the definition of product independence is derived from set

independence, an efficient set independence checker can also check product independence. To avoid

checking independence with a time-intensive exhaustive search, we derive an equivalent condition

that can be efficiently checked to ensure independence. Given a tuple set 4G?A =
∑=

8=1 C8 , denote

21,22,···,2< as the codes that are a factor of some C8 . For each tuple C8 ,1≤ 8 ≤= in 4G?A , we create a binary

vector+8 of length<, where the 9-th element is 1 if 2 9 is a factor of C8 , and 0 otherwise. The equivalent

condition of independence of set 4G?A =
∑=

8=1C8 is that+1,+2,···,+= are linearly independent in�� (2).

In other words, if we make a=×<matrix" , where the 8-th row is+8 , the equivalent condition is that

the" has rank = in�� (2). For example, for 4G?A =0⊙2+1⊙2+0⊙1, if 21,22,23 are 0,1,2 respectively,

the vectors for 0⊙2,1⊙2,0⊙1 are [1,0,1],[0,1,1],[1,1,0] respectively. These 3 vectors are not linearly

independent because [1,0,1]+[0,1,1]= [1,1,0] in�� (2), so 4G?A is not an independent set. Intuitively,

this is because the binary vector addition in�� (2) represents the binding of tuples, e.g., 1+1=0 in

the previous example’s last vector element is because binding0⊙2 and1⊙2 cancels out 2 . Calculating

the rank of a =×<matrix can be done with a$ (=2<) or$ (<2=) Gaussian elimination algorithm.

Correctness.Abinding of tuples corresponds to the sumof their+ s in�� (2). And for an index set B ⊂

{1,2,...,=}, C8 =⊙9∈BC 9 is equivalent to a linear equation+8+
∑

9∈B+9 =0 in�� (2). Therefore,when� is an

independent set, there exist no such linear equations,which is equivalent to linear independence of+ s.

Connection to Statistical Independence. From the formalism of the independence checker, we

can derive that) is an independent set that is equivalent to that the bit values of C8 ∈) are statistically

mutually independent. We consider the value of one dimension for all the vectors, and all the other

dimensions follow the same arguments. Denote the values of the code vectors as x, i.e., x8 is the value

of 28 ’s vector. x can be any of the 2
< values, each with probability 2−< , as codes are independently

randomly generated. For an assignment of the tuple vectors y, we have y="x. There are 2= possible

ys. For each given assignment y, the probability mass of it is 2−< times the number of solutions x of

equation"x=y. Since" is rank=, it is guaranteed that there is at leastonesolution, andafterGaussian

elimination, the Echelon form has<−= free variables in x, each of which can be either 0 or 1. This

means that there are exactly 2<−= solutions of x, and thus the probabilitymass of this assignment y is

2<−= ·2−< =2−= . Thus, the joint distribution of the vector bit values of C8 is a uniform distribution over

all possible 2= values (each bit is 0 or 1, with equal 50%probability). This is exactly the same as the joint

distribution of= randomly generated codes, sowe can analyze themas if theywere independent codes.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:20 Pu (Luke) Yi and Sara Achour

Table 2. Summary of randomly generated data structure and query characteristics as a function of data

structure size (: or (:,<)). Non-standard queries are described in grey. WTA queries only support matches.

benchmark query type data structure and query sizes

set threshold 50:-100: element sets, 1 element/query

db-match threshold 5:-10: fields/record, 50-100 records,< fields/query

kgraph threshold 1-100: edges/concept, 100:+10 concepts, 800:-1000: edges,

1 edge/query, 2 relations

nfa threshold recognizes str with length : , 1-: character strings/query, 26 letters/alphabet

query: matches are substrings of str, non-matches are partial substrings of str

db-analogy winner-take-all (WTA) :/2-: fields/record, 50<-100< records, 1 analogy query

query: select rows 0,1 where ⟨:,E⟩ ∈0, ⟨:,E′ ⟩ ∈1, infer E from itemmemory and E′

benchmark size parameters benchmark sizes

set : 1 2 3 4 5

db-match (:,<) (1,2) (2,4) (3,6) (4,8) (5,10)

kgraph : 1 2 3 4 5

nfa : 6 8 10 12 14

db-analogy (:,<) (4,1) (8,2) (12,3) (16,4) (20,5)

7.2 Discussion

Use of Binary Search.Heim’s optimization algorithm exploits the fact that the accuracy of the HD

computation increases monotonically with hypervector size to parametrize the HD computation

efficiently. This has been shown theoretically [Frady et al. 2018; Gallant and Okaywe 2013; Kleyko

et al. 2022], and we also verify it in our evaluation (Figures 9a-9d). Because the accuracy is monotonic

with respect to hypervector size, we can perform a binary search over hypervector sizes to identify

the smallest hypervector size that satisfies a minimum accuracy requirement.

Metadata for Independence Checker.Many usage patterns involve building a data structure once

and then querying the data structure hypervector. Once the data structure is checked for indepen-

dence and built as hypervectors, no independence metadata about the data structure needs to be

stored. Only the subset queries must be checked for independence when the data structure is queried.

This can be done with the algorithmwe described. We note it may be possible to directly embed this

check in the encoding computation, which could be more lightweight.

8 EVALUATIONONERROR-FREEHARDWARE

We evaluate Heim on five analysis-amenable HDC-based data structures over five different data

structure complexities (: or (:,<)) – Table 2 summarizes the complexity of the randomly generated

data structures and queries at each size. 1 For example, the set-100 benchmark has complexity: =100,

and is evaluated over random sets containing 50-100 elements and single element queries over the set.

EachHeim data structure parametrization is evaluated over 100 randomly generated data structures

and 20 randomly generated match/not-match queries, where half the queries evaluate to "match".

The accuracy of each data structure-query computation is evaluated over ten randomly sampled

codebooks. All baseline andHeim executions are evaluated over the same randomly sampled data

structures, queries, and codebooks to reduce the effect of variance on the evaluation.

Query Accuracy Metric.Given Pmatching query executions and N not-matching query executions

that produce TP true positive and TN true negative results, the accuracy of each benchmark is defined

as one minus the average of the true positive and true negative rates (1
2
()%
%

+)#
#
)). We employ

a balanced strategy where false positive and negative rates are equally important since the real

distributions of positive and negative queries depend on the target applications. Heim supports

unbalanced false positive and false negative rates, so unbalanced query distributions can also be

1See supplementary materials for implementation details

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:21

(a) set (b) db-match (c) kgraph

(d) nfa (e) db-analogy

Fig. 6. Y-axis is median of the reported accuracies (0.0-1.0), error bars are 25% and 75% percentiles. Shaded

area is below the target 99% accuracy. ■ for Heim, ■ for dt-all, ■ for dt-par, ■ for dt-hybrid.

handled. We also report the accuracy ratio (rat) for benchmark applications, corresponding to the

percentage of random data structure instantiations satisfying the target accuracy.

Baselines.We evaluateHeim-optimized hypervector size and threshold parametrizations against

dynamic tuning-based baselines. These comparisons isolate the accuracy and performance benefits

delivered byHeim over traditional parameter tuning approaches. Each parameterization is optimized

to deliver a target query accuracy of 99%, all dynamic tuning baselines use the dynamic tuning

algorithm from Figure 2a, and all described baselines have error injection disabled:

▶ Heim: Heim is used to statically optimize the distance thresholds and hypervector size for each

benchmark withHeim to get 99% accuracy. For queries composed of sets of elements (db-match,

nfa),Heim computes distance thresholds for different query set sizes.
▶ dt-par: The hypervector size is fixed at 10,000 bits and a single distance threshold is dynami-

cally tuned to attain 99% query accuracy. WTA queries accept no settable query parameters and,

therefore, do not have dt-par executions.
▶ dt-all: The hypervector size is dynamically tuned to find the smallest size between 1-100,000

bits that attains a query accuracy of 99%. For each candidate size, a single distance threshold is

dynamically tuned to maximize accuracy. The search saturates at 100,000 bits.
▶ dt-hybrid: The hypervector size is dynamically tuned similarly to dt-all, butHeim is used to find

the theoretically optimal distance thresholds for each candidate hypervector size. This baseline

isolates the effect of usingHeim-derived thresholds for hypervector queries.

8.1 �ery Accuracy Comparison

Figure 6 compares the query accuracy of Heim-optimized programs against the baseline executions.

The plot charts the median (timeseries), Q1, and Q3 (vertical bar) for each execution, and the query

accuracies that violate the 99%accuracy requirement are shadedgrey.Heim achieves 99.2%-100.0%me-

dian accuracy across all benchmarks – the required accuracy target of 99% is thereforemet on expecta-

tion.Qualitatively,Heim-optimized executions have lowvariance in accuracy (vertical bars) across tri-

als andgenerallydeliver consistent accuracyacrossdifferent benchmark sizes compared to thedynam-

ically tuned and statically sized baselines. Therefore,Heim-optimized data structures reliably satisfy

the desired query accuracy targets and consistently deliver the expected accuracy.Wenote that 80%of

the executed trials exceed the 99%accuracy target (80% rat) across all benchmarks–wedonot observe

adherence to the accuracy constraint 100%of the time becauseHeim’s guarantees hold on expectation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:22 Pu (Luke) Yi and Sara Achour

s-100 s-200 s-300 s-400 s-500 m-10-2 m-20-4 m-30-6 m-40-8 m-50-10 k-100 k-200 k-300

Heim 3407 6807 10208 13608 17009 1376 4224 8633 14601 22129 3407 6807 10208

dt-par 0.34 0.68 1.02 1.36 1.70 0.14 0.42 0.86 1.46 2.21 0.34 0.68 1.02

dt-all 1.69 1.76 1.27 1.63 1.81 0.86 0.04 0.09 0.15 0.22 0.87 1.39 1.20

2016 3865 8049 8324 9394 1604 100000 100000 100000 100000 3909 4908 8496

k-400 k-500 n-6 n-8 n-10 n-12 n-14 a-4-100 a-8-200 a-12-300 a-16-400 a-20-500

Heim 13608 17009 3594 6517 10387 15235 21088 1509 6119 14157 25804 41186

dt-par 1.36 1.70 0.36 0.65 1.04 1.52 2.11 0.15 0.61 1.42 2.58 4.12

dt-all 1.21 1.29 0.04 0.07 0.10 0.15 0.21 2.22 1.96 1.52 1.62 1.51

11254 13195 100000 100000 100000 100000 100000 681 3125 9318 15897 27241

Fig. 7. Baselines’ hypervector size in each benchmark. s, m, k, n, a abbreviate set, db-match, kgraph, nfa,

db-analogy respectively. Row 1, 4 present dt-par, dt-all hypervector sizes (in bits), and rows 2,3 present

ratio of Heim size to dt-all and dt-par size. dt-par uses hypervector size 10000 in all benchmarks. ■ and

■ cells have a rat of less than 50% and 80% respectively.

In contrast, the dynamically tuned (dt-all) baseline delivers 54.5%-99.5% median query accuracy,

where only four benchmark evaluations (4 points) have median accuracies that meet the accuracy

target of 99%. The dt-all benchmark evaluations also experience more significant fluctuations in

query accuracy (vertical bars) thanHeim-optimizedHDcomputations and experience degradations in

accuracy as the benchmark size increases, likely because the empirically derived parametrizations do

not generalize well, especially as the queries and data structures grow in complexity. Statically fixing

the hypervector size to 10,000 bits and dynamically tuning only the hypervector threshold (dt-par)

attains higher median accuracies than full dynamic tuning andHeimwhen the data structure is small.

For 3 of 5 benchmarks, dt-par achieves at least 99% median accuracy for the smaller 1-2 benchmark

executions. The median accuracy of dt-par evaluations substantially degrades as the size of the data

structures increases–over all executions,dt-paroptimizedprogramsattaina50.5%-100.0%medianac-

curacy. This phenomenon occurs because threshold-only tuning cannot expand the hypervector size

to accommodate hypervectors that implement larger data structures and encode more information.

Hybrid Optimization.We also evaluate the query accuracy of a hybrid optimization approach

(dt-hybrid) that usesHeim to find thresholds, given dynamically tuned query size. For 24 of the 25

benchmark executions, dt-hybrid executions attain median accuracies that are 0.1%-45.5% higher

than dt-all.2 Notably, the dt-hybrid executions attain substantially better accuracy than dt-all on

the nfa and db-matchbenchmarks,which supports the claim that specializing thedistance threshold to

the query size is important for queries containingmultiple elements.Weobserve the db-match and nfa

benchmarks use queries containing multiple elements and, therefore, likely work best when the dis-

tance thresholds are selected based on the query size. Because the dynamic tuning baselines only tune

one threshold, the thresholdmaynotworkwell across different query sizes.While it is possible to tune

multiple thresholds dynamically, this would be prohibitively expensive to do with dynamic tuning.

8.2 Hypervector Size Comparison

Figure 7 compares the hypervector sizes of Heim-optimized executions against dynamically tuned

(dt-all) and statically sized (dt-par) executions. The red-shaded cells fail to meet the 99%median ac-

curacy requirement, and the grey shaded cellsmeet the 99% accuracy requirement less than 80% of the

time. For the 4 of 25 dt-all benchmark executions which achieve 99% median accuracy, dt-all finds

1.27-1.52x smaller hypervector sizes thanHeim for three executions, and a 1.15x larger hypervector

size thanHeim for one execution. Of the benchmarks that do not meet the accuracy requirement,

2The dt-hybrid execution reports a 0.1% lower median accuracy than dt-all on the remaining execution due to sample

randomness.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:23

(a) set (b) db-match (c) kgraph

(d) nfa (e) db-analogy

Fig. 8. Y-axis is measured runtime (s) for tuning the hypervector size and threshold, averaged over 10 runs

on a single-core machine. The ■ is Heim, ■ is dt-all, ■ is dt-par. The dt-par trendline is omi�ed in the

db-analogy figure, because the benchmark uses aWTA query and does not require a threshold.

9 of the 25 executions max out at the largest hypervector size. Therefore, dynamic tuning (dt-all)

typically produces smaller hypervectors thanHeimwhen it can find a parametrization that meets

the desired accuracy target, asHeim employs a conservative strategy, but dt-all is rarely able to find

a parametrization that reliably delivers a 99% query accuracy on average. In contrast,Heim chooses

larger hypervectors than dynamic tuning but reliably meets the accuracy target on expectation with

low variance in all cases. In cases where dynamic tuning cannot meet the target query accuracy

(size=100k), the dynamic tuning algorithm selects hypervector sizes 4.55-25x larger thanHeim.Heim

can analytically derive smaller hypervectors by searching over a larger parameter space that includes

thresholds and sizes tailored to specific queries and data structures.

For the 10 of 25 dt-par benchmark executions which achieve 99%median accuracy,Heim finds

hypervectors that are 1.47x-7.14x smaller than 10k bits for 7 of 10 executions, and finds hypervectors

that are 1.02x-1.42x larger than 10k bits for 3 of 10 executions, where 10k is the statically configured

hypervector size. We also find dt-par’s accuracy degrades for larger benchmarks and selects un-

necessarily large hypervectors for small benchmark executions. These issues arise because cdt-par

cannot flexibly adjust the size to accommodate larger or smaller benchmark executions. Therefore,

Heimmore consistently meets the target accuracy requirement than static allocation strategies while

also delivering space savings for executions that can execute with smaller numbers of bits.

8.3 Optimization Time Comparison

Figure 8 compares the optimization runtimes forHeim against the dynamic tuning baselines.Heim

completes its analysis in85-3210milliseconds,whiledt-all takes40 seconds to22.72hours tooptimize

the hypervector size and threshold. Fixing the hypervector size and dynamically tuning only the

threshold (cdt-par) is substantially faster than full dynamic tuning, taking between 3.9 seconds and

168.8 seconds to compile. TheHeim optimizer is 303.0x-100167.4x faster than full dynamic tuning

(dt-all) and 30.0x-874.4x faster than threshold-only dynamic tuning (dt-par), and generally scales

better as the benchmark size increases. Because both dynamic tuning approaches are simulation-

based, execution time scales poorly as thenumber of parameters to tune and the complexity of the data

structure increases. In contrast,Heim’s static analysis procedure is model-based and computes the

optimal threshold andhypervector size in constant time.Theperformanceof theparameter derivation

algorithm is insensitive to the size of the optimized data structure, enabling scalable analysis.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:24 Pu (Luke) Yi and Sara Achour

(a) set (b) db-match (c) kgraph

(d) nfa (e) db-analogy

Fig. 9. Memory cells required to store each hypervector with 99% accuracy. The ■ is unoptimized hypervector

size (10,000 bits, 1-bit-per-cell), ■ is Heim, ■ is Heim-2bpc, ■ is Heim-3bpc. db-match records use 20 fields,

db-analogy databases have 300 records.

9 EVALUATIONOFHEIMONEMERGINGHARDWARE TECHNOLOGIES

Heim’s accuracy analysis enables sound optimization of HD computations to execute with accept-

able accuracy in the presence of hardware error. This capability enables the optimization of HD

computations for error-prone emerging hardware technologies. We use Heim to systematically

study the benefits and drawbacks of using different emerging technologies for hyper-dimensional

computation. We analyze the performance benefits offered by analog content-addressable memories

(CAMs) (Section 9.2), and the storage benefits offered by analogmulti-bit storage arrays. (Section 9.1).

9.1 Heim Storage Density Analysis withMLCReRAMs

WeuseHeim to analyze the storagebenefits of usingmultiple-bit-per-cell (MLC,: BPC)ReRAM-based

itemmemories for HD computation against conventional one-bit-per-cell DRAM-based memory.

We useHeim to minimize the hypervector size while delivering a target query accuracy of 99% for

2 BPC ReRAM, 3-BPC ReRAM, and conventional DRAM.

MLC ReRAMs. ReRAM is an emerging resistive memory technology that is prone to bit corruption

but delivers fast access times, non-volatility, and improved density. We investigate the benefits of

2BPCand3BPCReRAM,whichhave rawbit error rates of 0.0215 and 0.1273, respectively.All ReRAM

error measurements were collected by characterizing a ReRAM storage array fabricated 130nm logic

CMOS process in the BEOL with ECC disabled. [Hsieh et al. 2019; Le et al. 2021; Wei et al. 2023]

Analysis. Figure 9 presents the number of memory cells required to store each hypervector as a

function of the benchmark size for conventional, 2BPC ReRAM (2bpc), and 3BPC ReRAM (3bpc)

hardware platforms. Heim produces hypervectors that require 76-8400 binary memory cells for

conventional memory.Heim produces 94-10064 bit hypervectors that use 47-5032 memory cells for

2 BPC ReRAM, netting an additional 1.614x-1.677x cell reduction over conventional binary memory.

Though the overall hypervector size increases for 2 BPCmemory, the 2x improvement in data density

for this memory technology subsumes this size increase.Heim produces 270-27361 bit hypervectors

that use 90-9121memory cells for 3 BPCReRAM. Though 3BPCReRAM is denser than 2 BPCReRAM,

it does not net density improvements because the benchmark HD computations require substantially

larger hypervectors to execute accurately in the presence of hardware error.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:25

processor caches memory

platform cores threads/core frequency L1D L1I L2 L3 main specialized

micro 2 1 1GHz 32KB, 8w 64KB/8w 2MB/16w 16MB/16w 3GB -

multi 10 2 2.8GHz 32KB/8w 32KB/8w 256KB/4w 20MB/16w 3GB -

cam 2 1 1GHz 32KB/8w 64KB/8w 2MB/16w 16MB/16w 3GB Analog CAM

Table 3. Benchmark hardware platforms. All caches are :-way (kw) associative, L1, L2 are private.

(a) set (b) db-match (c) kgraph

(d) nfa (e) db-analogy

Fig. 10. Y-axis is simulated runtime (ms) of a single query with gem5 averaged over 20 runs. The ■ is micro,

■ is multi, ■ is cam.

9.2 Heim Performance Analysis with Analog CAMs

We evaluate the benchmark applications on embedded (micro), multicore (multi), and emerging

hardware (cam) platforms. Each architecture is simulated with the x86 gem5 simulator using the

processor and cache hierarchy presented in Table 3. [Binkert et al. 2011] The embedded andmulticore

baselines are based on the Intel Atom x7211E and Intel Core i9-10900E x86 architectures, respectively,

and the CAM hardware platform uses the embedded architecture coupled with an analog CAM that

efficiently performs itemmemory lookups to implement HD computations, but introduces error into

the computation. To ensure an iso-accuracy comparison, we useHeim to optimize each execution

to achieve a 99% accuracy on the respective hardware platform. 3 The benchmarks are parallelized

and implemented in C, where the query hypervector is built in parallel, and the itemmemory/query

distances are computed in parallel. For the CAM hardware platform, the software instead computes

the itemmemory/query distances by dispatching a single query to the CAM.

TheAnalog CAM.The cam hardware platform has the same baseline characteristics as the embedded

hardware platform but also offers a ReRAM-basedAnalogCAM that usesOhm’s andKirchhoff’s laws

to perform in-memory, parallel hamming distance calculations against a query bit vector. [Imani et al.

2017b] Because the analog CAM both performs analog computation and uses an emerging device

technology, the associated hamming distance calculations are unreliable and completewith a bit error

rate of 0.14%. The analog CAM is extremely fast and completes the entire itemmemory query in 2.74-

11.90 nanoseconds, provided 6-100 itemmemory rows are in use. The associated latency increases

with rowwidth, and the bit error rate increases with rowwidth and device density. We parametrize

the CAM to use 10k-bit rows, where > 10k-bit hypervectors are split across rows; these row distances

are summed in the analog domain with Kirchhoff’s law. The communication costs between the

embedded system and the CAM are modeled as a DRAM access, and the threshold query latency

3for db-analogy simulation, we set the itemmemory and codebook sizes to be 1
4 of the actual size to avoid memory issues

with the gem5-x86 simulator.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

222:26 Pu (Luke) Yi and Sara Achour

is conservatively approximated with theWTA lookup latency. We build performance and hardware

errormodels by fitting regressions to the figures presented in the associated paper. [Imani et al. 2017b]

Analysis Figure 10 presents the simulated runtime of a single query as a function of the benchmark

size, averaged over 20 executions. On average, the multi, micro, and cam executions take 0.589-5.418,

0.385-283.226, and 0.000-4.526 milliseconds respectively, depending on the benchmark. We observe

that, unsurprisingly, the multi executions complete much faster than the micro executions for large

benchmarks and only execute slightly slower on small benchmarks. The multicore platform has 5x

more cores at its disposal and operates at 2.8x the frequency of the embedded system, so it, therefore,

can complete HD computations much faster, provided the synchronization overheads amortize.

However, once the embeddedplatform ispairedwithaCAM, the embeddedplatform’sperformance

becomes competitive and, in some cases, better than the multicore system. The cam executions are

2.16x-389.51x faster than micro executions for all benchmarks and 1.35x-62.55x faster than multi exe-

cutions for 21 out of 25 benchmarks. The cam delivers substantial performance improvements because

it significantly accelerates the item-memory search, which is usually the bottleneck when the query

encoding is simple. We observe that these performance benefits hold, even thoughHeim optimizes

the CAM executions to use 1.011x-1.012x larger hypervectors to ensure iso-accuracy in the presence

of hardware error. The multi executions are faster than cam in the largest 3 db-match benchmarks

because the query encoding uses bundling operation and, therefore, becomes the bottleneck.

DiscussionWhileHD computing is, at a glance, more resource-inefficient than classical computation

for this class of applications, theHD computing paradigm enables the use of emerging hardware tech-

nologies that drastically accelerate computation and enable dense storage, such as CAMs andMLC

ReRAM. These emerging technologies only implement highly restrictive subsets of computational

operators and are error-prone,which canoften lead to unpredictable effects on classical computations.

Moreover, because the HDCmodel uses a distributed information representation, it is also amenable

to several program optimizations that do not typically apply to classical programs. For example, the

Heim per-query hypervector sizes and thresholds can be used to compute hypervector distances over

smaller sets of bits soundly or to terminate distance calculations early when a match or not-match

is guaranteed. Moreover, the binding, bundling, and permutation operation implementations and

hypervector sizing can be altered to improve performance, provided the distance relationships be-

tween input and output vectors hold. Second, because the encoded information is evenly distributed,

algorithms can use highly unusual program transformations. For example, HD data structures can be

combined by splicing hypervectors together, distances can be computed over any segment of hyper-

vector bits in any order, queries over data structure hypervectors can be fielded in themiddle of a data

structure update, and HD queries can be prematurely interrupted to receive a computational result.

10 RELATEDWORK

HDC/VSA.Hyperdimensional computing (HDC), or vector symbolic architecture (VSA), is a highly

general cognitive computing paradigm that operates on binary, integer, real-valued, or complex-

valued hypervectors [Kleyko et al. 2022, 2023b, 2021; Plate 1994, 2003; Yu et al. 2022]. Researchers

have implemented VSA computations with emerging hardware platforms [Halawani et al. 2021;

Imani et al. 2017b, 2019c; Karunaratne et al. 2020; Langenegger et al. 2023; Poduval et al. 2021]. We

focus on HD computing with binary spatter codes [Kanerva et al. 1997] because this computational

model is easy to implement in hardware, and amenable to theoretical analysis.

Theoretical Analysis of HD Computation. Kanerva derived the distance distributions for the

set-recall [Kanerva et al. 1997], and Kleyko derived distance distributions for subset-recall [Kleyko

et al. 2016]. We use Kanerva’s and Kleyko’s theoretical results to develop the Type I and Type II QDS

analysis employed byHeim. Researchers have also studied theoretical capacity and recall accuracy

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:27

of winner-take-all queries over VSA itemmemories [Frady et al. 2018; Gallant and Okaywe 2013;

Kleyko et al. 2023a,c; Plate 1994; Thomas et al. 2021]. We extend the perception theory [Frady et al.

2018] to developHeim’s WTA accuracy analysis.

Horizontal Thresholding. Kleyko et al. derived an approach for horizontally thresholding distance

distributions for subset-set recall queries. [Kleyko et al. 2016] This thresholding does not apply to

Type III QDS queries, discards distance sub-ranges, and does not estimate query accuracy or solve

for the optimal distance threshold. In contrast,Heim analyzes a broader set of data structure queries

(Type I-Type 3 QDS), and derives an optimal distance threshold to use. Our approach also uses the

entire range of distance values when evaluating a query.

Hypervector Size Minimization for Classification. Prior work has primarily focused on dynamic

approaches toward hypervector parameter optimization. Imani et al. dynamically tuned hypervector

size to explore the trade-off between computational efficiency and accuracy. [Imani et al. 2018]Morris

et al. decomposed computational hypervectors into lower-dimensional vectors of a dynamically

selected size. [Morris et al. 2019] Basaklar et al. reduced the hypervector size by tuning the level

hypervector construction for classification tasks. [Basaklar et al. 2021] Other works have tuned

application-specific hypervector parameters, such as level hypervector chunk sizes, to reduce re-

source usagewhilemaintaining classification accuracy. [Imani et al. 2019c]All approachesmentioned

above are heuristic techniques that leverage dynamic tuning over representative inputs and therefore

do not offer static guarantees. In contrast,Heim employs statically sound analytical methods that

deliver accuracy guarantees, even in the presence of hardware error.

11 CONCLUSION

We presentedHeim, a framework for statically optimizing HD computation parameters to minimize

resource usage in the presence of hardware error.Heim produced parametrizations that generalize

across queries and data structures and satisfy a target accuracy on expectation. Heim improved

on dynamic parameter tuning-based approaches that potentially overfit to test data, provide no

guarantees, and take orders of magnitude more time to find parametrizations. We demonstrated

thatHeim’s analysis results could be leveraged to perform aggressive space-saving optimizations

without compromising result fidelity and to systematically analyze emerging technologies’ benefits

and drawbacks while maintaining iso-accuracy. With analysis and programming systems such as

Heim, we can enable the development of principled program optimizations that effectively reduce

the resource requirements of HD computations without compromising accuracy.

ACKNOWLEDGMENTS

This research was supported by the Stanford SystemXAlliance and ACCESS – AI Chip Center for

Emerging Smart Systems, sponsored by InnoHK funding, Hong Kong SAR.

DATA-AVAILABILITY STATEMENT

The software that supports Sections 8 and 9 is available on Zenodo [Yi and Achour 2023].

REFERENCES

Sara Achour and Martin C Rinard. 2015. Approximate computation with outlier detection in topaz. Acm Sigplan Notices

50, 10 (2015), 711–730. https://doi.org/10.1145/2858965.2814314

Toygun Basaklar, Yigit Tuncel, Shruti Yadav Narayana, Suat Gumussoy, and Umit Y Ogras. 2021. Hypervec-

tor design for efficient hyperdimensional computing on edge devices. arXiv preprint arXiv:2103.06709 (2021).

https://doi.org/10.48550/arXiv.2103.06709

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R

Hower, Tushar Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture news

39, 2 (2011), 1–7. https://doi.org/10.1145/2024716.2024718

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

https://doi.org/10.1145/2858965.2814314
https://doi.org/10.48550/arXiv.2103.06709
https://doi.org/10.1145/2024716.2024718

222:28 Pu (Luke) Yi and Sara Achour

Kenneth L Clarkson, Shashanka Ubaru, and Elizabeth Yang. 2023. Capacity Analysis of Vector Symbolic Architectures. arXiv

preprint arXiv:2301.10352 (2023). https://doi.org/10.48550/arXiv.2301.10352

Manuel Eggimann, Abbas Rahimi, and Luca Benini. 2021. A 5 `w standard cell memory-based configurable hyperdimensional

computing accelerator for always-on smart sensing. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 10

(2021), 4116–4128. https://doi.org/10.1109/TCSI.2021.3100266

E Paxon Frady, Denis Kleyko, and Friedrich T Sommer. 2018. A theory of sequence indexing andworkingmemory in recurrent

neural networks. Neural Computation 30, 6 (2018), 1449–1513. https://doi.org/10.1162/neco_a_01084

Stephen I Gallant and TWendy Okaywe. 2013. Representing objects, relations, and sequences. Neural computation 25, 8

(2013), 2038–2078. https://doi.org/10.1162/NECO_a_00467

RossWGayler and Simon D Levy. 2009. A distributed basis for analogical mapping. InNew Frontiers in Analogy Research;

Proc. of 2nd Intern. Analogy Conf, Vol. 9.

Alessandro Grossi, Elisa Vianello, Mohamed M Sabry, Marios Barlas, Laurent Grenouillet, Jean Coignus, Edith Beigne,

Tony Wu, Binh Q Le, Mary K Wootters, et al. 2019. Resistive RAM endurance: Array-level characterization and

correction techniques targeting deep learning applications. IEEE Transactions on Electron Devices 66, 3 (2019), 1281–1288.

https://doi.org/10.1109/TED.2019.2894387

Yasmin Halawani, Eman Hassan, Baker Mohammad, and Hani Saleh. 2021. Fused RRAM-based shift-add architecture for

efficient hyperdimensional computing paradigm. In 2021 IEEE International Midwest Symposium on Circuits and Systems

(MWSCAS). IEEE, 179–182. https://doi.org/10.1109/MWSCAS47672.2021.9531748

Mike Heddes, Igor Nunes, Tony Givargis, Alexandru Nicolau, and Alex Veidenbaum. 2022. Hyperdimensional hashing: a

robust and efficient dynamic hash table. In Proceedings of the 59th ACM/IEEE Design Automation Conference. 907–912.

https://doi.org/10.1145/3489517.3530553

ER Hsieh, M Giordano, B Hodson, A Levy, SK Osekowsky, RM Radway, YC Shih, W Wan, TF Wu, X Zheng, et al. 2019.

High-density multiple bits-per-cell 1T4R RRAM array with gradual SET/RESET and its effectiveness for deep learning.

In 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, 35–6. https://doi.org/10.1109/IEDM19573.2019.8993514

Mohsen Imani, Samuel Bosch, Sohum Datta, Sharadhi Ramakrishna, Sahand Salamat, Jan M Rabaey, and Tajana Rosing.

2019a. Quanthd: A quantization framework for hyperdimensional computing. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 39, 10 (2019), 2268–2278. https://doi.org/10.1109/TCAD.2019.2954472

Mohsen Imani, Chenyu Huang, Deqian Kong, and Tajana Rosing. 2018. Hierarchical hyperdimensional comput-

ing for energy efficient classification. In Proceedings of the 55th Annual Design Automation Conference. 1–6.

https://doi.org/10.1145/3195970.3196060

Mohsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing. 2017a. Voicehd: Hyperdimensional computing

for efficient speech recognition. In 2017 IEEE international conference on rebooting computing (ICRC). IEEE, 1–8.

https://doi.org/10.1109/ICRC.2017.8123650

Mohsen Imani, Abbas Rahimi, Deqian Kong, Tajana Rosing, and JanMRabaey. 2017b. Exploring hyperdimensional associative

memory. In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 445–456.

https://doi.org/10.1109/HPCA.2017.28

Mohsen Imani, Sahand Salamat, Saransh Gupta, Jiani Huang, and Tajana Rosing. 2019b. Fach: Fpga-based acceleration of

hyperdimensional computing by reducing computational complexity. In Proceedings of the 24th Asia and South Pacific

Design Automation Conference. 493–498. https://doi.org/10.1145/3287624.3287667

Mohsen Imani, Sahand Salamat, Behnam Khaleghi, Mohammad Samragh, Farinaz Koushanfar, and Tajana Rosing.

2019c. Sparsehd: Algorithm-hardware co-optimization for efficient high-dimensional computing. In 2019 IEEE

27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 190–198.

https://doi.org/10.1109/FCCM.2019.00034

Michael N Jones and Douglas JK Mewhort. 2007. Representing word meaning and order information in a composite

holographic lexicon. Psychological review 114, 1 (2007), 1. https://doi.org/10.1037/0033-295X.114.1.1

Pentti Kanerva. 2009. Hyperdimensional computing: An introduction to computing in distributed representation with

high-dimensional random vectors. Cognitive computation 1, 2 (2009), 139–159.

Pentti Kanerva. 2010. What we mean when we say"What’s the dollar of Mexico?": Prototypes and mapping in concept space.

In 2010 AAAI fall symposium series.

Pentti Kanerva. 2014. Computing with 10,000-bit words. In 2014 52nd annual Allerton conference on communication, control,

and computing (Allerton). IEEE, 304–310. https://doi.org/10.1109/ALLERTON.2014.7028470

Pentti Kanerva. 2018. Computing with high-dimensional vectors. IEEE Design & Test 36, 3 (2018), 7–14.

https://doi.org/10.1109/MDAT.2018.2890221

Pentti Kanerva et al. 1997. Fully distributed representation. PAT 1, 5 (1997), 10000.

Geethan Karunaratne, Manuel Le Gallo, Giovanni Cherubini, Luca Benini, Abbas Rahimi, andAbu Sebastian. 2020. In-memory

hyperdimensional computing. Nature Electronics 3, 6 (2020), 327–337. https://doi.org/10.1038/s41565-023-01357-8

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

https://doi.org/10.48550/arXiv.2301.10352
https://doi.org/10.1109/TCSI.2021.3100266
https://doi.org/10.1162/neco_a_01084
https://doi.org/10.1162/NECO_a_00467
https://doi.org/10.1109/TED.2019.2894387
https://doi.org/10.1109/MWSCAS47672.2021.9531748
https://doi.org/10.1145/3489517.3530553
https://doi.org/10.1109/IEDM19573.2019.8993514
https://doi.org/10.1109/TCAD.2019.2954472
https://doi.org/10.1145/3195970.3196060
https://doi.org/10.1109/ICRC.2017.8123650
https://doi.org/10.1109/HPCA.2017.28
https://doi.org/10.1145/3287624.3287667
https://doi.org/10.1109/FCCM.2019.00034
https://doi.org/10.1037/0033-295X.114.1.1
https://doi.org/10.1109/ALLERTON.2014.7028470
https://doi.org/10.1109/MDAT.2018.2890221
https://doi.org/10.1038/s41565-023-01357-8

Hardware-Aware Static Optimization of Hyperdimensional Computations 222:29

Yeseong Kim, Mohsen Imani, NiemaMoshiri, and Tajana Rosing. 2020. Geniehd: Efficient dna pattern matching accelerator

using hyperdimensional computing. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,

115–120. https://doi.org/10.23919/DATE48585.2020.9116397

Denis Kleyko, Connor Bybee, Ping-Chen Huang, Christopher J Kymn, Bruno A Olshausen, E Paxon Frady, and Friedrich T

Sommer. 2023a. Efficient decoding of compositional structure in holistic representations. Neural Computation 35, 7 (2023),

1159–1186. https://doi.org/10.1162/neco_a_01590

Denis Kleyko, Mike Davies, Edward Paxon Frady, Pentti Kanerva, Spencer J Kent, Bruno A Olshausen, Evgeny Osipov, Jan M

Rabaey, Dmitri A Rachkovskij, Abbas Rahimi, et al. 2022. Vector Symbolic Architectures as a Computing Framework

for Emerging Hardware. Proc. IEEE 110, 10 (2022), 1538–1571. https://doi.org/10.1109/JPROC.2022.3209104

Denis Kleyko, Evgeny Osipov, Alexander Senior, Asad I Khan, and Yaşar Ahmet Şekerciogğlu. 2016. Holographic graph

neuron: A bioinspired architecture for pattern processing. IEEE transactions on neural networks and learning systems

28, 6 (2016), 1250–1262. https://doi.org/10.1109/TNNLS.2016.2535338

Denis Kleyko, Dmitri Rachkovskij, Evgeny Osipov, and Abbas Rahimi. 2023b. A survey on hyperdimensional computing

aka vector symbolic architectures, part ii: Applications, cognitive models, and challenges. Comput. Surveys 55, 9 (2023),

1–52. https://doi.org/10.1145/3558000

Denis Kleyko, Dmitri A Rachkovskij, Evgeny Osipov, and Abbas Rahimi. 2021. A Survey on Hyperdimensional Computing

aka Vector Symbolic Architectures, Part I: Models and Data Transformations. ACM Computing Surveys (CSUR) (2021).

https://doi.org/ASurveyonHyperdimensionalComputingakaVectorSymbolicArchitectures

Denis Kleyko, Abbas Rahimi, Ross W Gayler, and Evgeny Osipov. 2020. Autoscaling bloom filter: control-

ling trade-off between true and false positives. Neural Computing and Applications 32 (2020), 3675–3684.

https://doi.org/10.1007/s00521-019-04397-1

Denis Kleyko, Antonello Rosato, Edward Paxon Frady, Massimo Panella, and Friedrich T. Sommer. 2023c. Perceptron Theory

Can Predict the Accuracy of Neural Networks. IEEE Transactions on Neural Networks and Learning Systems (2023), 1–15.

https://doi.org/10.1109/TNNLS.2023.3237381

Jovin Langenegger, Geethan Karunaratne, Michael Hersche, Luca Benini, Abu Sebastian, and Abbas Rahimi.

2023. In-memory factorization of holographic perceptual representations. Nature Nanotechnology (2023), 1–7.

https://doi.org/10.1038/s41565-023-01357-8

Binh Q Le, Akash Levy, Tony FWu, Robert M Radway, E Ray Hsieh, Xin Zheng, Mark Nelson, Priyanka Raina, H-S Philip

Wong, SimonWong, et al. 2021. RADAR: A fast and energy-efficient programming technique for multiple bits-per-cell

RRAM arrays. IEEE Transactions on Electron Devices 68, 9 (2021), 4397–4403. https://doi.org/10.1109/TED.2021.3097975

Haitong Li, Tony FWu, Abbas Rahimi, Kai-Shin Li, Miles Rusch, Chang-Hsien Lin, Juo-Luen Hsu, MohamedM Sabry, S Burc

Eryilmaz, Joon Sohn, et al. 2016. Hyperdimensional computing with 3D VRRAM in-memory kernels: Device-architecture

co-design for energy-efficient, error-resilient language recognition. In 2016 IEEE International Electron Devices Meeting

(IEDM). IEEE, 16–1. https://doi.org/10.1109/IEDM.2016.7838428

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Rinard. 2014. Chisel: Reliability-and

accuracy-aware optimization of approximate computational kernels. ACM Sigplan Notices 49, 10 (2014), 309–328.

https://doi.org/10.1145/2714064.2660231

Fabio Montagna, Abbas Rahimi, Simone Benatti, Davide Rossi, and Luca Benini. 2018. PULP-HD: Accelerating brain-inspired

high-dimensional computing on a parallel ultra-low power platform. In 2018 55th ACM/ESDA/IEEE Design Automation

Conference (DAC). IEEE, 1–6. https://doi.org/10.1145/3195970.3196096

Justin Morris, Mohsen Imani, Samuel Bosch, Anthony Thomas, Helen Shu, and Tajana Rosing. 2019. CompHD: Efficient

hyperdimensional computing using model compression. In 2019 IEEE/ACM International Symposium on Low Power

Electronics and Design (ISLPED). IEEE, 1–6. https://doi.org/10.1109/ISLPED.2019.8824908

SV Nagaev and VI Chebotarev. 2011. On the bound of proximity of the binomial distribution to the normal one. InDoklady

Mathematics, Vol. 83. Springer, 19–21. https://doi.org/10.1134/S1064562411010030

Evgeny Osipov, Denis Kleyko, and Alexander Legalov. 2017. Associative synthesis of finite state automata model of a

controlled object with hyperdimensional computing. In IECON 2017-43rd Annual Conference of the IEEE Industrial

Electronics Society. IEEE, 3276–3281. https://doi.org/10.1109/IECON.2017.8216554

Dmitry V Pashchenko, Dmitry A Trokoz, Alexey I Martyshkin, Mihail P Sinev, and Boris L Svistunov. 2020. Search for a

substring of characters using the theory of non-deterministic finite automata and vector-character architecture. Bulletin

of Electrical Engineering and Informatics 9, 3 (2020), 1238–1250. https://doi.org/10.11591/eei.v9i3.1720

Tony A Plate. 1994. Distributed representations and nested compositional structure. Citeseer.

Tony A Plate. 2000. Analogy retrieval and processing with distributed vector representations. Expert systems 17, 1 (2000),

29–40. https://doi.org/10.1111/1468-0394.00125

Tony A Plate. 2003. Holographic Reduced Representation: Distributed representation for cognitive structures. (2003).

Prathyush Poduval, Zhuowen Zou, Hassan Najafi, Houman Homayoun, and Mohsen Imani. 2021. Stochd: Stochastic

hyperdimensional system for efficient and robust learning from raw data. In 2021 58th ACM/IEEE Design Automation

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

https://doi.org/10.23919/DATE48585.2020.9116397
https://doi.org/10.1162/neco_a_01590
https://doi.org/10.1109/JPROC.2022.3209104
https://doi.org/10.1109/TNNLS.2016.2535338
https://doi.org/10.1145/3558000
https://doi.org/A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures
https://doi.org/10.1007/s00521-019-04397-1
https://doi.org/10.1109/TNNLS.2023.3237381
https://doi.org/10.1038/s41565-023-01357-8
https://doi.org/10.1109/TED.2021.3097975
https://doi.org/10.1109/IEDM.2016.7838428
https://doi.org/10.1145/2714064.2660231
https://doi.org/10.1145/3195970.3196096
https://doi.org/10.1109/ISLPED.2019.8824908
https://doi.org/10.1134/S1064562411010030
https://doi.org/10.1109/IECON.2017.8216554
https://doi.org/10.11591/eei.v9i3.1720
https://doi.org/10.1111/1468-0394.00125

222:30 Pu (Luke) Yi and Sara Achour

Conference (DAC). IEEE, 1195–1200. https://doi.org/10.1109/DAC18074.2021.9586166

Dmitri A Rachkovskij and Serge V Slipchenko. 2012. Similarity-based retrieval with structure-sensitive sparse binary dis-

tributed representations. Computational Intelligence 28, 1 (2012), 106–129. https://doi.org/10.1111/j.1467-8640.2011.00423.x

Abbas Rahimi, Simone Benatti, Pentti Kanerva, Luca Benini, and Jan M Rabaey. 2016. Hyperdimensional biosignal processing:

A case study for EMG-based hand gesture recognition. In 2016 IEEE International Conference on Rebooting Computing

(ICRC). IEEE, 1–8. https://doi.org/10.1109/ICRC.2016.7738683

Abbas Rahimi, SohumDatta, Denis Kleyko, Edward Paxon Frady, Bruno Olshausen, Pentti Kanerva, and Jan M Rabaey. 2017.

High-dimensional computing as a nanoscalable paradigm. IEEE Transactions on Circuits and Systems I: Regular Papers

64, 9 (2017), 2508–2521. https://doi.org/10.1109/TCSI.2017.2705051

Abbas Rahimi, Pentti Kanerva, Luca Benini, and Jan M Rabaey. 2018. Efficient biosignal processing using hyperdimensional

computing: Network templates for combined learning and classification of exg signals. Proc. IEEE 107, 1 (2018), 123–143.

https://doi.org/10.1109/JPROC.2018.2871163

Kenny Schlegel, Florian Mirus, Peer Neubert, and Peter Protzel. 2021. Multivariate time series analysis for driving style

classification using neural networks and hyperdimensional computing. In 2021 IEEE Intelligent Vehicles Symposium (IV).

IEEE, 602–609. https://doi.org/10.1109/IV48863.2021.9576028

Kenny Schlegel, Peer Neubert, and Peter Protzel. 2022. HDC-MiniROCKET: Explicit time encoding in time series classification

with hyperdimensional computing. In 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

https://doi.org/10.1109/IJCNN55064.2022.9892158

Hashim Sharif, Yifan Zhao, Maria Kotsifakou, Akash Kothari, Ben Schreiber, ElizabethWang, Yasmin Sarita, Nathan Zhao,

Keyur Joshi, Vikram S Adve, et al. 2021. ApproxTuner: a compiler and runtime system for adaptive approximations.

In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 262–277.

https://doi.org/10.1145/3437801.3446108

MaxM Shulaker, Tony FWu, Asish Pal, Liang Zhao, Yoshio Nishi, Krishna Saraswat, H-S PhilipWong, and Subhasish Mitra.

2014. Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs. In 2014

IEEE International Electron Devices Meeting. IEEE, 27–4. https://doi.org/10.1109/IEDM.2014.7047120

Chris Simpkin, Ian Taylor, Graham A Bent, Geeth de Mel, Swati Rallapalli, Liang Ma, and Mudhakar Srivatsa. 2019.

Constructing distributed time-critical applications using cognitive enabled services. Future Generation Computer Systems

100 (2019), 70–85. https://doi.org/10.1016/j.future.2019.04.010

Justin Theiss, Jay Leverett, Daeil Kim, and Aayush Prakash. 2022. Unpaired Image Translation via Vector Symbolic

Architectures. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,

Part XXI. Springer, 17–32. https://doi.org/10.1007/978-3-031-19803-8_2

Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing. 2021. Theoretical Foundations of Hyperdimensional Computing.

Journal of Artificial Intelligence Research 72 (2021), 215–249. https://doi.org/10.48550/arXiv.2010.07426

Anjiang Wei, Akash Levy, Pu (Luke) Yi, Robert Radway, Priyanka Raina, Subhasish Mitra, and Sara Achour. 2023. PBA:

Percentile-Based Level Allocation for Multiple-Bits-Per-Cell RRAM. In ICCAD.

Tony F Wu, Haitong Li, Ping-Chen Huang, Abbas Rahimi, Gage Hills, Bryce Hodson, William Hwang, Jan M Rabaey,

H-S Philip Wong, Max M Shulaker, et al. 2018. Hyperdimensional computing exploiting carbon nanotube FETs,

resistive RAM, and their monolithic 3D integration. IEEE Journal of Solid-State Circuits 53, 11 (2018), 3183–3196.

https://doi.org/10.1109/JSSC.2018.2870560

Thomas Yerxa, Alexander Anderson, and Eric Weiss. 2018. The hyperdimensional stack machine. Cognitive Computing

(2018), 1–2.

Pu (Luke) Yi and Sara Achour. 2023. Artifact for the OOPSLA 2023 Article "Hardware-Aware Static Optimization of

Hyperdimensional Computations". https://doi.org/10.5281/zenodo.8329813

Tao Yu, Yichi Zhang, Zhiru Zhang, and Christopher M De Sa. 2022. Understanding hyperdimensional computing for parallel

single-pass learning. Advances in Neural Information Processing Systems 35 (2022), 1157–1169.

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 222. Publication date: October 2023.

https://doi.org/10.1109/DAC18074.2021.9586166
https://doi.org/10.1111/j.1467-8640.2011.00423.x
https://doi.org/10.1109/ICRC.2016.7738683
https://doi.org/10.1109/TCSI.2017.2705051
https://doi.org/10.1109/JPROC.2018.2871163
https://doi.org/10.1109/IV48863.2021.9576028
https://doi.org/10.1109/IJCNN55064.2022.9892158
https://doi.org/10.1145/3437801.3446108
https://doi.org/10.1109/IEDM.2014.7047120
https://doi.org/10.1016/j.future.2019.04.010
https://doi.org/10.1007/978-3-031-19803-8_2
https://doi.org/10.48550/arXiv.2010.07426
https://doi.org/10.1109/JSSC.2018.2870560
https://doi.org/10.5281/zenodo.8329813

	Abstract
	1 Introduction
	1.1 Hyperdimensional Computing / Vector Symbolic Architectures
	1.2 The Heim Optimizer
	1.3 Contributions

	2 Hyperdimensional Computing
	2.1 Data Structure/Query Interpretation of HD Computing

	3 Illustrative Example: Knowledge Graph
	3.1 Naive Query Optimization
	3.2 Optimizing the Apples Query with Heim

	4 Heim Specification Languages
	4.1 Hardware Error Model

	5 Heim Accuracy Analysis
	5.1 Intuition: Accuracy of Threshold-Based Queries
	5.2 Intuition: Accuracy of Winner-Take-All Queries
	5.3 Threshold-Based Query Accuracy Analysis (thrAccAnalysis)
	5.4 Winner-Take-All Query Accuracy Analysis (wtaAccAnalysis)

	6 Analytical Model (M)
	6.1 Mutual Independence
	6.2 Query-Data Structure (QDS) Predicates
	6.3 Most Common Not-Match Distribution - Independent Vectors
	6.4 Type I (Single Element - Independent Set) Analytical Model
	6.5 Type II (Subset - Independent Set) Analytical Model
	6.6 Type III (Tuple-Set) Analytical Model
	6.7 Hardware Error-Aware Mean Distance Model (HwErr(hw,MeanDist))
	6.8 Correspondance between Mean Distance and Distance Distributions (ToNormal)
	6.9 Discussion on Model Simplifications
	6.10 Discussion on Mutual Independence

	7 Heim Optimization Framework
	7.1 Dynamic Independence Checker
	7.2 Discussion

	8 Evaluation on Error-Free Hardware
	8.1 Query Accuracy Comparison
	8.2 Hypervector Size Comparison
	8.3 Optimization Time Comparison

	9 Evaluation of Heim on Emerging Hardware Technologies
	9.1 Heim Storage Density Analysis with MLC ReRAMs
	9.2 Heim Performance Analysis with Analog CAMs

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

