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Abstract—Recently, researchers have demonstrated multiple-bits-per-
cell (MBPC) data storage using resistive random access memory (RRAM)
device technologies. In MBPC storage, a level allocation algorithm iden-
tifies a level allocation that maps resistance ranges to bit combinations.
State-of-the-art level allocation algorithms, such as sigma-based allocation
(SBA), fit cell characterization data to parameterized distributions and
then use distribution parameters (i.e., programmed resistance standard
deviation σ) to find level allocations. However, from the datasets we col-
lected, the data points do not actually conform to the chosen distribution,
and therefore the real-world analog behaviors are poorly approximated
by the parameterized distribution-based approach. We present PBA, a
percentile-based level allocation algorithm that computes level allocations
directly from characterization data. We show that PBA level allocations
have 30%-71% lower bit-error rates and 22%-41% lower ECC storage
overheads than SBA on three fabricated RRAM storage arrays.

Index Terms—Resistive RAM (RRAM), Multiple-Bits-Per-Cell, Level
Allocation, Hardware Modeling, Data Storage

I. INTRODUCTION

There are several resistive memory technologies, including phase-
change memories (PCM), resistive random access memories (RRAM)
and conductive bridging random access memories (CBRAM), that
offer a variety of performance, density, energy, and fabrication
benefits [1]–[5] over existing non-volatile and volatile memories.
These properties make these emerging memory technologies promis-
ing candidates for embedded applications [6], dense storage, and
monolithic 3D integration [7], [8]. This work focuses on RRAM,
one such promising memory technology.

RRAM supports both binary and multiple-bits-per-cell data storage
schemes. In binary storage, bits are persistently stored by partitioning
the resistance range of the RRAM cell into a high-resistance state
(HRS - e.g., storing a ”0”) and low-resistance state (LRS - e.g.,
storing a ”1”). Similarly, digital multiple-bits-per-cell (MBPC) data
storage approaches promise to deliver higher storage densities for
embedded digital systems. For example, in RRAM, 2-4 bits-per-
RRAM-cell storage approaches have been demonstrated [3], [9]–
[14]. To realize MBPC storage, a level allocation, which maps bit
combinations to resistance ranges in a memory cell, is required.
Typically, the level allocation is automatically derived with a level
allocation algorithm, which partitions the memory array’s resistance
range into levels. A data corruption occurs when the resistance
value read out of a memory cell corresponds to a level and binary
combination that differs from the level and binary combination
originally written into that cell.

Level allocation algorithms consider several analog effects when
identifying a good level allocation for a given memory technology.
RRAM devices suffer from various non-idealities, including process
variation, which causes RRAM cell-to-cell, array-to-array, and wafer-
to-wafer variations, and relaxation effects, which cause the stored
resistance to change over time [3], [6], [15]–[20]. In addition,
the read circuitry in the RRAM array can introduce errors due
to insufficient precision (i.e., insufficient read margin) and thermal
and voltage noise. These non-idealities can induce substantial data
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Figure 1: Comparison between our approach and parameterized
distribution-base level allocation.

corruption if not managed. To consider these analog effects, level
allocation algorithms typically work with characterization datasets
that capture the effects of the read circuits, RRAM relaxation, and
process variation to ensure the identified level allocations will result
in low error across cells, arrays, and wafers. This process can also
be performed during die test for die-optimized level allocation. The
algorithm uses the collected characterization data to estimate the error
of level allocations and to ultimately guide the search.

A. Parametrized Distribution-Based Level Allocation

State-of-the-art level allocation algorithms, such as sigma-based
allocation (SBA), construct a model of analog behavior by fitting a
common, parameterized distribution (e.g., normal or normal/lognor-
mal depending on resistance range) to the collected characterization
data [3], [9], [12], [13]. Once fit to the data, the distributional pa-
rameters and probability density function are used to identify quality
level allocations. These level allocation algorithms are often carefully
architected to intelligently use particular distributional parameters
(e.g., standard deviation σ) to find low-error level allocations specific
to the memory technology.1 As existing level allocation algorithms
work with parameterized distributions, the combination of all em-
pirically observed analog behaviors (i.e., read noise, relaxation,
and process variation) are approximated with a single distribution.
This approximation potentially eliminates or misrepresents analog

1In SBA, the variance is a function of the written resistance and is computed
from an empirically derived resistance-variance curve.
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Figure 2: Level allocation for 2 bits-per-cell RRAM.

behaviors present in the characterization data that do not follow
the assumed distribution.

For example, SBA (i.e., Sigma-Based Level Allocation) [3], [9],
[12]–[14], a state-of-the-art level allocation algorithm for RRAM,
models RRAM resistances with parameterized normal [3], or nor-
mal/lognormal [9] distributions, using the distribution’s mean and
standard deviation to derive level allocations. However, when a
statistical test for normality is applied to the RRAM characterization
data used for level allocation, more than 90% of the resistance
data distributions are non-normal (Section VII). Therefore, RRAM
level allocation algorithms that assume normality, such as SBA,
work with an imprecise view of the memory array’s analog behavior
to construct level allocations. While, in practice, the parametrized
normal distribution captures enough behavior to identify a reasonable
level allocation, the identified level allocation may not fully exploit
the capabilities of the memory technology.

B. PBA: Percentile-Based Level Allocation

We present PBA2, a new level allocation algorithm that directly
calculates percentiles over the underlying device characterization data
to estimate error rather than fitting a parameterized model. Because
PBA computes level allocations directly from data, it captures analog
behaviors present in the data that cannot be easily modeled within
a single parametrized distribution, such as a normal distribution.
We also provide data collection guidelines for constructing PBA-
compatible characterization datasets that produce good level alloca-
tions.

We evaluate PBA’s level allocations on three different RRAM stor-
age arrays fabricated using the same RRAM process technology [21].
We compare PBA with state-of-the-art parameterized-distribution-
based algorithm SBA [3], [9], and find:
• PBA outperforms SBA on all tested RRAM storage arrays: PBA

delivers 30%-71% reduction in bit error rates (BER), and 22%-41%
reduction in error correcting code (ECC) storage overheads.

• PBA’s BER improvements become negligible when configured
to assume the same parameterized distribution as SBA, which
suggests that PBA’s direct use of characterization data to find
good level allocations is critical to its success.

• PBA outperforms SBA even when provided with reduced and
multi-chip datasets: PBA produces 1%-43% lower BERs than
SBA on small datasets, 17%-29% lower BERs on datasets col-
lected from multiple chips, and 15%-28% lower BERs on datasets
collected from the non-target chip.

II. BACKGROUND

Level Allocation. Figure 2 presents an example 2-bits-per-cell (2
BPC) level allocation that captures the mapping between a cell’s
resistance and stored bit combinations. Each bit combination must
uniquely map to a level (e.g., “00”, “01”, “11”, “10” are mapped to

2https://github.com/Anjiang-Wei/PBA

levels 1, 2, 3, 4 respectively). Each level is defined by a write center
c (shown in blue in Figure 2) and a read range [xl, xh] (shown in
purple). Similar notions also apply to 3 BPC level allocation. Next,
we will explain the write centers and read ranges in detail.
Write Centers. Given a level i to write to a cell j, the write
algorithm will tune the resistance of cell j to match the target level
i’s write center ci within some write tolerance. The write tolerance
(z) determines how closely the write algorithm needs to tune a given
cell’s resistance to match the target write center (ci±z). RRAM write
algorithms typically tune each cell’s resistance using a program-and-
verify approach where the cell’s resistance is iteratively adjusted and
then read until it is within the tolerance [3]. With program-and-verify
algorithms, larger write tolerances result in faster write operations
but may accrue higher error rates. Typically, an expert hard-codes
the write tolerance to the smallest value that still delivers reasonable
write speeds. The effect of write failures is captured during data
collection (see Section III).

All writes to RRAM target resistances must fall within the overall
cell resistance window (e.g., [7kΩ, 30kΩ] in Figure 2). Any writes
that target resistances outside this window may permanently damage
cells in the memory array [13] and further degrade the hardware.
This requirement is enforced during chip characterization and regular
operation of the hardware.
Read Ranges. In a current-mode read scheme, to read the value from
a memory cell, the memory control logic applies a known small (i.e.,
below the level that programs the cell) voltage to the cell and then
reads the outgoing current to identify the cell’s resistance r̂. The
control logic determines the level i with a read range [xli, xhi] that
contains r̂. In the above example, any read resistance r̂ contained
within the read range of level 2 (between purple lines) encodes the
bit value 01. The read range is larger than the write range to account
for potential resistance changes after a write. The read-out circuit
noise may produce a resistance measurement r̂ ̸= r where r is the
cell’s true resistance. This read noise is accounted for during data
collection (see Section III).
Data Corruptions. In multiple-bits-per-cell storage, a data corruption,
or error, occurs when the data is written to some level i and later
read as another level j. These errors occur because of unexpected
conformational changes in the memory due to temperature and the
applied write voltage, fabrication variations between cells, and non-
idealities in the read circuitry [2], [22]–[24]. In Figure 2, the error
(red arrow) illustrates a case where the value 11 is written to a cell,
and the value 10 is later read from the same cell – here, the cell
experiences a data corruption which induces a bit flip. Here, the bit
flip error occurs because resistance is set to the write range of level
3 and ends up at the read range of level 4. To ensure an error to an
adjacent level only triggers a single bit flip, practitioners have used
binary data encodings such as gray codes to map bit sequences to
levels [25].

III. PBA DATA PROVIDER AND DATA COLLECTION

We next present the PBA data provider, which provides an
interface for querying resistance distributions backed by RRAM
characterization data. The data provider returns datasets that capture
the resistance distribution after a write operation to resistance c has
been completed, and t seconds have elapsed:

data-prov(c, t) → R = [r0, r1, ...]

The returned resistance data is used to estimate the error probability
of the candidate level. Depending on how the characterization data
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Figure 3: Example experiments for characterizing write algorithm behavior, relaxation, and cell-to-cell process variations. In each experiment,
multiple measurements are taken (tables) to characterize the resistance distribution (bar plot) after a write to resistance c (red line) is performed
and t seconds (blue text) have elapsed. The r column in the table presents the measured resistances.

is collected, the returned resistance dataset can capture the effects
of relaxation, process variation, and errors resulting from insufficient
read margin.

A. Data Collection

The PBA data provider works with characterization datasets con-
taining collections of measurements. Each measurement ⟨c, t, r⟩ is
collected by writing a resistance c to a cell and then measuring
the resistance r of the cell after t seconds have elapsed. Only
write resistances within the resistance window of the RRAM storage
array can be used for characterization. Characterization datasets that
follow this basic structure can be analyzed by the data provider
and used by the PBA level allocation algorithm. Figure 3 presents
measurement strategies to capture RRAM non-idealities; all of these
measurements should be performed with multiple write centers to
capture dependences on the written resistance:
• Write Algorithm and Read Noise. The write algorithm behavior

is characterized by measuring the resistance r immediately after a
write to c. If the resistance measurement is performed using the
storage array’s read circuitry, these measurements also capture the
effect of read noise on the read resistance.

• Relaxation. The effect of relaxation is captured by measuring a
given cell’s resistance over time after writing a resistance c.

• Process variation. The effect of process variation is captured by
repeating a measurement with the same write center c and time t
across different cells or storage arrays.

Best Practices. To maximize the chances of finding a good level
allocation, PBA works best with datasets that meet the following
criteria:
• To ensure a sufficiently large search space, the dataset should

contain many distinct write resistances c.
• Enough relaxation measurements are collected with the time-to-

read value that will be used for level allocation.
• To ensure error can be estimated with sufficient accuracy, the

dataset should contain enough measurements for a given c and
t to compute percentiles with a sufficiently fine granularity.

• The RRAM write algorithm is configured to use a fixed write
tolerance for all write operations. This includes limitations on write
retries (e.g., to keep write times to a reasonable value).

IV. LEVEL ALLOCATION ALGORITHM

Given a characterization dataset and the number of levels to fit
in the resistive memory cell, n, PBA produces as output a n-level
allocation scheme that minimizes the probability that an error occurs.
An n-level allocation L is made up of a sequence of n levels

Relaxation data c=8Ω,t=1s 
Maximum error γ=2%

Compute Read Range [xl, xh]
with Percentile Resistance (kΩ)

c=8

t=1s

xh=9.2xl=6.5 p=0.98

Right 
error 
=1%

Left 
error
=1%

99% 1% 
Left Percentile

xhc=8kΩxl

Generate
Candidate Levels

9kΩ

10kΩ

40kΩ

...

Longest Non-Overlapping 
Levels

11kΩ

11kΩ8kΩ 20kΩ

Right Percentile

Figure 4: Example execution of level allocation algorithm with a
maximum error γ = 2%. For each write center, the algorithm
constructs each candidate level by computing the read range [xl, xh]
with maximum error γ. The returned level allocation is the longest
non-overlapping sequence of levels in the candidate level set.

{l1, ..., ln}. Each level li = ⟨ci, xli, xhi⟩ in the allocation is defined
by a write center ci, and a read interval lower bound xli and a read
interval upper bound xhi. The write algorithm’s write tolerance is a
fixed value that is set by the hardware designer.

A level allocation is valid if no two levels have overlapping read
ranges. Specifically, for any distinct i, j in a valid n-level allocation,
[xli, xhi] should not overlap with [xlj , xhj ]. This property ensures
that each resistance value maps to at most one level.

A. Intuition for Algorithm Design

Given a write center ci and time-to-read t, we can construct
a read range [xli, xhi] with an error probability γ by computing
percentiles over the resistances returned by the data provider. The γ
error probability is the maximum acceptable probability of error for
the target level. For example, if we want to produce a read range with
a maximum error probability of γ = 2%, then we set xli and xhi

to the resistances at the 1% and 99% percentiles of the dataset (as
shown in Figure 4). With this read range, 2% of the resistance dataset
lies outside the read range, so the probability that a write to ci results
in a read outside the read range [xli, xhi] is 2%. The algorithm uses
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this basic insight to compute read ranges from write centers and the
maximum error probability γ. This procedure is performed for each
candidate write center ci to form a set of candidate levels for the
level allocation algorithm to use.

Given the number of levels to allocate n, the algorithm still needs
to (1) find the lowest error probability γ that can be used for the
allocation, (2) find a set of n non-overlapping levels, where each level
has an error probability γ. These goals ensure the level allocation is
valid and finds the densest level allocation within its search space with
the lowest error. To find the smallest γ, the algorithm searches over
linearly spaced γ values and finds the densest level allocation for each
γ value. The level allocations are computed by finding the longest
non-overlapping subset of candidate levels with error probability γ;
this ensures no two levels overlap.
Basic Algorithm. Given n levels to allocate, the algorithm finds the
smallest γ value that produces an n-level allocation. The algorithm
computes a level allocation for each γ value by first computing a set
of candidate levels with error probability γ from the characterization
dataset’s write centers and then selecting the longest non-overlapping
subset of candidate levels. The algorithm performs a binary search
over γ values to expedite the search procedure. A binary search can
be used since the number of levels in the level allocation is monotonic
with respect to γ. Intuitively, larger γ values result in narrower read
ranges and more non-overlapping levels, so the number of levels
increases with increasing γ values.

B. Algorithm Description

Algorithm 1 presents the level allocation algorithm deployed by
PBA. The algorithm tries to identify the level allocation with the
lowest error probability that contains n levels. The algorithm accepts
as input the target number of levels n and the error granularity ϵ. The
algorithm also needs to know how we collect the dataset – a list of
write centers C and the relaxation time t from the characterization
dataset are both provided. The list of write centers C includes all the
write centers ci in the dataset so that the algorithm may query the
data provider interface given ci and t.

Main Algorithm (LevelAlloc)
The function LevelAlloc defines the entry point of the algorithm –
it performs a binary search for the maximum error probability γ over
the range of [0, 1] at the granularity of ϵ. The algorithm terminates if it
finds a satisfying level allocation of n levels. PBA generates its level
allocation in two steps: it first constructs a set of all candidates with
the maximum error γ by invoking CandidateGen (line 4), and then
it selects the maximum number of non-overlapping levels from those
candidates (line 5) by invoking another function FindNonOverlap.
Candidate Level Generation (CandidateGen)
The function returns a collection of candidate levels ⟨ci, xli, xhi⟩,
all of which have errors less than or equal to the maximum error γ.
To generate those candidates, the algorithm iterates over all the write
centers c in the parameter space C, then selects xl and xh values at
the ( 1

2
γ)× 100% percentile and the (1− 1

2
γ)× 100% percentile of

the relaxation data points respectively (line 12-13). Therefore, all the
generated candidates will conform to the maximum error (line 14).
To compute the percentile (Percentile defined in line 17), we
just need to sort the array of data points in the increasing order, and
compute the index by multiplying the percentage parameter passed
in (perc) with the size of the array, and finally return the element in
the sorted array with the computed index.
Level Allocation Construction (FindNonOverlap)
PBA constructs the densest level allocation given a list of candidates

Algorithm 1: PBA Level Allocation Algorithm
Input:

n # Number of levels to be allocated
ϵ # Minimum granularity of error

Define:
C # List of write centers (from dataset)
t # Relaxation time (from dataset)

1 Function LevelAlloc(n, ϵ):
2 # The following loop can be binary search
3 for γ ∈ [0, ϵ, 2ϵ, ..., 1] do
4 Candidates = CandidateGen(γ)
5 Result = FindNonOverlap(Candidates)
6 if Result.length == n then
7 return Result

8 Function CandidateGen(γ):
9 Candidates = [] # Candidate levels for all write ranges

10 for c in C do
11 R = data-prov(c, t) # List of resistance data points
12 xl = Percentile(R, 1

2
· γ) # Lower bound

13 xh = Percentile(R, 1− 1
2
· γ) # Upper bound

14 assert Probability(R ∈ [xl, xh]) ≤ 1− γ
15 Candidates.append(⟨c, xl, xh⟩)
16 return Candidates

17 Function Percentile(R, perc):
18 Rsorted = sort(R) # Sort list of points in increasing order
19 index = perc · size(R)
20 return Rsorted[index]

21 Function FindNonOverlap(Cand):
22 Result = [] # Non-overlapping levels
23 SortCand = sort(Cand, key = xh) # Sort by xh
24 UpperBound = 0

25 for ⟨c, xl, xh⟩ ∈ SortCand do
26 if xl ≥ UpperBound then
27 Result.append(⟨c, xl, xh⟩)
28 UpperBound = xh # Update the bound

29 return Result

(Cand). The candidates are a list of ⟨c, xl, xh⟩ tuples, and their
[xl, xh] may overlap with each other. This function is guaranteed to
return a level allocation with the largest number of non-overlapping
levels, which we will prove later. FindNonOverlap first sorts all
the generated candidates by their upper read resistance xh (line 23)
to produce a sorted list of levels SortCand. Then the algorithm
constructs the optimal level allocation by iteratively adding the
candidate level that does not overlap with the previously selected
level’s xh. In the iteration over all the candidates, the function
appends the non-overlapping level into the Result (consisting of
a list of the tuples ⟨c, xl, xh⟩) and maintains the upper bound of
current resistance range UpperBound (lines 27-28). The function
returns Result after all the sorted levels have been processed, all of
which have read ranges [xl, xh] that do not overlap with one another.

C. Optimality Proof

We prove that the function FindNonOverlap always selects a
level allocation that contains the maximum number of levels, given
a list of candidate levels. We prove that sorting by xh and then
iteratively selecting the first non-overlapping level finds the greatest
number of non-overlapping levels and produces the densest level
allocation.
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Proof. Given a list of levels LS sorted by increasing upper read
resistance, the algorithm produces a greedy level allocation L =
LS[x1], ..., LS[xk] that selects the levels at indices Σ = {x1, ..., xk}
from LS. Let Σ′ = {y1, ..., ym} be another set of indices that
selects m levels from LS and orders these levels by their upper
read resistances. Let’s further state that Σ′ is better than Σ (m > k).

We next show Σ′ does not exist. This proof uses the notation lr(xi)
and ur(xi) to denote the lower and upper read resistance for the level
in LS at index xi. We first prove by induction that for all i ≤ k,
ur(xi) ≤ ur(yi):
Base case: m = 2, k = 1, our algorithm first selects the level with
the lowest upper read range, so ur(x1) ≤ ur(y1) must hold.
Induction case: For i > 1, if the statement holds for i− 1, it is true
for i. The induction hypothesis states that ur(xi−1) ≤ ur(yi−1), so
any level that does not overlap with the optimal solution Σ′ will also
not overlap with our greedy solution Σ. Therefore, ur(xi) ≤ ur(yi)
holds.

After proving that ur(xk) ≤ ur(yk), we show by contradiction
that the better solution Σ′ (m > k) cannot exist. If m > k, then the
(k + 1)th level must satisfy lr(yk+1) ≥ ur(yk) since Σ′ encodes a
well-formed allocation. Because ur(xk) ≤ ur(yk) (induction proof),
the level at yk+1 is compatible with all levels in L, so our greedy
algorithm would have added yk+1 to Σ. This is a contradiction, so L
(produced by our algorithm) must be one of the optimal solutions.

D. Implementation

The core algorithm is implemented within one hundred lines of
Python code. One implementation detail is that the resulting non-
overlapping levels may have resistance gaps between adjacent read
ranges. We close the gaps between adjacent read ranges by extending
them to meet in the middle so that no undefined resistance region
exists across the whole resistance range.

V. EXPERIMENTAL SETUP AND EVALUATION

Hardware Platforms. We evaluate PBA on three fabricated RRAM
storage array instances with two different array designs using dif-
ferent write algorithms to configure resistance (see Table I). All
three storage arrays are fabricated in a 40 nm silicon CMOS process
using foundry-provided RRAM bit cells. The two Ember chips [27]
incorporate an on-board write-verify algorithm for writing resistances
within a given write range, and a 6 bit, 64 level ADC for reading the
resistance of memory cells. Sapiens [26] uses off-chip measurement
hardware to set and read resistances, thereby supporting a larger space
of level allocations.
Data Collection. The last 4 columns of Table I summarize the char-
acterization datasets that were collected by exercising each storage
array. These datasets are used by the level allocation algorithms to
generate level allocations. For Sapiens, we exercise 200 cells with 32
write centers across the entire resistance window of [7.8kΩ, 40kΩ].
We use a fixed value of 50Ω as the write tolerance. We measure
at 0 seconds (for write measurements) and 1 second (for relaxation
measurements). For the Ember chips, we exercise 16384 cells at 64
write centers and one write tolerance of 2 levels, and measure at 0
seconds and 1 second. For Sapiens, because the write center can be
set to any resistance, we linearly interpolate over this dataset to fill in
data for intermediate write center resistances and use this augmented
dataset for level allocation.
Analysis. We use each level allocation algorithm to produce 4-
level (2 BPC) and 8-level (3 BPC) allocations for the characterized
RRAM storage array. The PBA implementation uses a minimum
error granularity ϵ of 10−6. For Sapiens, PBA is instantiated to search

over 500 uniformly spaced write resistances between [8, 40] kΩ, with
a write tolerance of 25 Ω. For the Ember chips, PBA is instantiated
to search over 64 ADC resistance values, and a write tolerance of 2
ADC resistance values.

We empirically measure the observed error rates on the fabricated
hardware. We then test 200-16384 random cells in the RRAM storage
array, depending on the array type, with the produced level allocations
to compute the empirically observed transition probability matrix. We
then compute the bit error rate (BER) and the ECC overhead from
the transition probability matrix. We use Gray coding [25] to assign
bits to levels, and use the following formula for the BER:

BER = 100%× #bit flips

#total bits

Storage Overhead. We also evaluate the storage overhead associated
with each level allocation in conjunction with an ECC scheme to
attain a 10−14 unrecoverable bit error rate. The lowest-overhead
Reed-Solomon, BCH, or Hamming code with a codeword size of
at most 12 bits is used for this analysis. Together, these quantities
capture the error rates associated with different level allocations and
the additional storage needed to use the RRAM array as a reliable
storage medium.

A. Comparison with Sigma-Based Allocation (SBA)

We compare PBA level allocations against the state-of-the-art SBA
level allocation [9]. The SBA algorithm has been used to identify
level allocations for a number of multi-level cell RRAM storage
arrays [3], [9], [12]–[14], and models the resistance distribution with a
parametrized normal or log-normal distribution. We implement SBA,
and validate our implementation by reproducing the level allocation
results shown in Figure 9 of the paper [9]. We then configure SBA to
take as input the data that we collect, and adopt a normal distribution
for data modeling (which was in prior work targeting the same
fabrication process [3]) to produce level allocations for Sapiens and
Ember chips.

B. Baseline: Sigma-Based Allocation

SBA is also a level allocation algorithm that tries to find an n-
level allocation with the smallest error. For each maximum error
probability, γ, SBA constructs a set of candidate levels with that
error probability from the provided write centers, and then greedily
finds a sequence of non-overlapping levels from the candidate level
set. The overall algorithmic structure of SBA is largely the same as
PBA’s algorithm, with two key differences:
1) SBA fits data to a normal distribution, and then uses the normal

distribution’s cumulutive distribution function (CDF) to compute
the read range for each write center. The normal distribution’s
parameters are derived by computing the mean and standard
deviation from the resistance dataset for each write center c. In
contrast, PBA computes directly computes the percentile over the
dataset.

2) SBA greedily allocates non-overlapping levels differently than
PBA, and as a result may produce sub-optimal level allocations
(Figure 5). SBA sorts levels by write center c, while PBA orders
levels by the read range upper bound xh. In Figure 5, SBA finds
a 2-level allocation, while PBA finds a 3-level allocation – SBA
may therefore miss the densest level allocation.

C. Bit Error Rate and ECC Overhead Comparison with SBA

Table II presents an accuracy and storage overhead comparison
between sba and pba level allocations. The first two columns present
the storage array and the number of bits-per-cell (2 BPC for 4-level,
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Chip # Cells Readout Write Algorithm # Cells Resistance Window # Resistances/Cell # Cells Tested
Sapiens [26] 64k off-chip off-chip RADAR [3] random 200 7.8kΩ− 40kΩ 32 random 200
Ember1,Ember2 [27] 3M on-chip ADC (6 bits) on-chip ISPP [3] random 16k 1-64 ADC levels 64 same 16k

Table I: Summary of benchmark hardware platforms. For all chips, the relaxation time is 1 second. All chips use a 40 nm CMOS process.

SBA and PBA

SBA

PBA

Figure 5: SBA sorts by write center c;
PBA sorts by read upper bound xh.

Bit Error Rate ECC Overhead
Chip BPC sba pba ∆BER Rel. ∆BER sba pba ∆ECC Rel. ∆ECC
Sapiens 2 0.93% 0.27% -0.66% -71% 13% 8% -5.5% -41%
Sapiens 3 3.4% 2.4% -1% -30% 30% 23% -6.4% -22%
Ember1 2 0.046% 0% -0.046% -100% 4.6% 0% -4.6% -100%
Ember1 3 0.74% 0.38% -0.36% -49% 12% 9.1% -3.2% -26%
Ember2 2 0% 0% 0% N/A 0% 0% 0% N/A
Ember2 3 0.7% 0.37% -0.34% -48% 12% 9% -2.8% -23%

Table II: Comparison between SBA and PBA level allocations for 2 and 3 bits-per-cell.

3 BPC for 8-level). Columns 3-6 compare the raw bit error rates
for SBA and PBA, and columns 7-10 present an iso-BER storage
comparison of SBA and PBA where all MLC storage arrays are
configured to use an error correcting-code (ECC) with a BER of
10−14. For each comparison, both the absolute difference pba - sba,
and the relative difference (pba - sba) / sba are reported, where
negative absolute and relative differences are better. Note that the 2
BPC allocation for Ember2 produces no observable errors (0% for
both sba and pba), and the 2 BPC allocation for Ember1 produces
one observable error (0.046%) for the SBA allocation and zero
observable errors for the PBA allocation.
Observation 1. PBA produces level allocations with lower bit error
rates for all chip and bits-per-cell configurations compared to SBA.
PBA delivers 0.046%-1.00% absolute reductions in BER over SBA,
and achieves an overall relative reduction in error rate by 30%-71%
(with 100% being an outlier).
Observation 2. PBA produces level allocations with lower ECC
overheads for all chips and bits-per-cell configurations compared to
SBA. PBA delivers 2.8%-6.4% absolute reductions in ECC storage
overhead over SBA, and achieves an overall relative reduction in
storage overhead of 22%-41% (with 100% being an outlier).

D. Performance Comparison with SBA

We empirically compare the running time of the PBA and SBA
algorithms with the same dataset. We implement both algorithms in
Python, and we measure the time for both algorithms to generate
the level allocations for 4 to 8 levels (2 to 3 BPC). Note that level
allocation is a one-time effort before storage array usage.
Observation 3. PBA’s level allocation algorithm is more than two
orders of magnitude faster than SBA. PBA takes 0.0065 seconds in
total, while SBA takes 3.4 seconds. The main reason is that PBA’s
the binary search over the target error bound (line 2 in Algorithm 1)
reduces the complexity of the algorithm while SBA does a linear
search [9] over the target error bound.

VI. ABLATION STUDY

We next perform an ablation study to evaluate the impact of PBA’s
algorithmic improvements and the impact of eliminating parametrized
distribution-based modeling on the BERs of the produced level
allocations. To perform this analysis, we introduce a second baseline,
pba-norm, which uses SBA’s normal distribution-based level con-
struction approach (Section V-B, Point 1), and PBA’s level allocation
algorithm. Comparisons between SBA and pba-norm isolate the
impact of the PBA algorithm, and comparisons between pba-norm

and PBA isolate the impact of eliminating parametrized distributions
from the algorithm.

A. Comparison with PBA Parametrized Distribution Variant

Table III presents the results of the ablation study. ∆BER1
computes the bit error rate difference sba - pba-norm representing
the BER reduction of SBA over pba-norm. ∆BER2 computes pba

- pba-norm indicating the BER reduction of PBA over pba-norm.
Similarly, we also present the difference for ECC overhead.
Observation 4. The major improvement of PBA over SBA comes
from getting rid of a parametrized distribution to model the data.
The percentage reduction shown in ∆BER2 and ∆ECC2 are bigger
than the ∆BER1 and ∆ECC1. We can see both positive numbers and
negative numbers in ∆BER1 and ∆ECC1, suggesting that pba-norm
does not indeed provide much benefit over sba. This indicates that
the major improvement of PBA over SBA comes from avoiding a
parametrized distribution to model the data.

VII. STATISTICAL STUDY OF RRAM DATASETS

In Section VI, we find that the PBA’s variant pba-norm does not
perform well because it adopts a parametrized normal distribution.
This suggests that the raw data points are quite irregular and may not
actually conform to a parametrized distribution. In this section, we
will conduct a normality test for a series of RRAM characterization
datasets to further confirm our hypothesis.

Table IV reports the percent of the data points for each write center
that conform to a normal distribution (i.e., passing the D’Agostino’s
K-squared test with a p-value of 0.001). The table presents the
normality results for the write and relaxation datasets collected
in our experiment (Sapiens). We also run the normality test on
the data collected in prior work, including RRAM write algorithm
dataset (Radar) [3], [28] and the publicly available RRAM relaxation
datasets [29] for three different device technologies (Tech A, Tech
B, Tech C). We do not consider the data collected for Ember1 and
Ember2 in our own experiments because their data are too coarse-
grained (at the granularity of only 64 levels) versus the datasets
used in Table IV. We conduct the normality test for both resistance
values and their reciprocal, i.e., conductance values, as shown in the
“Measure” column. For each write dataset, the normality of the data
points for each write center ci and the write tolerances are analyzed
(the “Write” column); for each relaxation dataset, the normality of
the data points for each write center ci and relaxation time t are
analyzed (the “Relax” column).
Observation 5. The write and relaxation datasets collected in our
experiment are all highly non-normal. We find that for the Sapiens
datasets, 97.9% of the write distributions, and 100% of the relaxation
distributions are non-normal.
Observation 6. The write datasets and relaxation datasets reported
in prior work are also highly non-normal. We find 0% of the RADAR
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Bit Error Rate ECC Overhead
Hardware BPC pba-norm sba ∆BER1 pba ∆BER2 pba-norm sba ∆ECC1 pba ∆ECC2
Sapiens 2 0.51% 0.93% 0.42% 0.27% -0.24% 10% 13% 3.3% 8% -2.2%
Sapiens 3 3.6% 3.4% -0.19% 2.4% -1.2% 31% 30% -1.4% 23% -7.8%
Ember1 2 0.05% 0.05% 0% 0% -0.05% 4.6% 4.6% 0% 0% -4.6%
Ember1 3 0.74% 0.74% 0% 0.38% -0.36% 12% 12% 0% 9.1% -3.1%
Ember2 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Ember2 3 0.8% 0.7% -0.1% 0.37% -0.43% 13% 12% -0.1% 9% -3.6%

Table III: Ablation study. ∆BER1 computes sba - pba-norm, and ∆BER2 computes pba - pba-norm. The percentage reduction in columns
∆BER2 and ∆ECC2 (improvement of pba over pba-norm) are bigger than ∆BER1, ∆ECC1 (comparison between pba-norm and sba).
This suggests the major improvement of pba over sba comes from avoiding a parametrized distribution to model the data.

Normal Percentage
Dataset # Cells Measure Write Relax
Sapiens 200 resistance 2.1% 0%
Sapiens 200 conductance 2.1% 0%
Radar 8192 resistance 0% -
Radar 8192 conductance 0% -
Tech A 16384 resistance - 8.2%
Tech A 16384 conductance - 8.7%
Tech B 32768 resistance - 4.5%
Tech B 32768 conductance - 6.6%
Tech C 16292 resistance - 0.6%
Tech C 16292 conductance - 3.6%

Table IV: D’Agostino’s K-squared normality test results for RRAM
characterization datasets. We conduct normality test on both resis-
tance values and its inverse (conductance values). We report the
fraction of write centers which conform to normal distribution.

algorithm write distributions are normally distributed. We also find
that only 0.6%-8.7% of the relaxation distributions for the Tech A,
Tech B, and Tech C device technologies are normally distributed.
Almost all (more than 90%) of the studied distributions are non-
normal, even though the data from prior work is collected over a
much larger number of cells.

The above observations give us more insight into why avoiding a
parametrized distribution to fit the data is a good idea. Due to the
irregularities present in the dataset, a parametrized distribution cannot
fully capture the high-order information in the original data points.

VIII. DATASETS AND LEVEL ALLOCATION

We next explore the interplay between the quality of the character-
ization dataset and the BERs of the SBA and PBA level allocations.
This analysis focuses on 3 BPC level allocations for the Ember chips
instances because the 3 BPC allocations exhibit higher error and the
Ember chips datasets contain more entries.

A. Multi-chip Data and Level Allocation

In this subsection, we study how the level allocation algorithms
will perform when taking into account the inter-chip variations.

We run the SBA and PBA level allocation algorithms for Ember1
and Ember2 using four different characterization datasets constructed
from the original Ember1 and Ember2 data. The 100/0 dataset
contains only the target chip’s characterization data, and is the base-
line dataset for this analysis. The balanced 50/50 dataset contains
an equal amount of Ember1’s and Ember2’s characterization data.
The unbalanced 10/90 dataset contains a small amount (10%) of
the target chip’s data, and a large amount (90%) of non-target
chip’s data, and the 0/100 dataset contains only the non-target
chip’s characterization data. Together, these datasets capture the
effect of using multiple chip characterization datasets, and using chip
characterization datasets collected from the non-target chip, on level

allocation. Table V presents the BERs and ECC overheads associated
with different characterization datasets.
Observation 7. PBA consistently outperforms SBA in BER and
ECC overhead across diverse datasets, comprising a combination
of data collected from the target chip as well as another similar
chip, with varying proportions. Across all combined datasets, PBA
produces level allocations with 15%-29% lower BERs and 8%-19%
lower ECC overheads than SBA.
Observation 8. PBA can deliver even larger reduction in BER
and ECC overhead over SBA when provided with sufficient target
chip data. In general, increasing the amount of target chip data
provided to the algorithm leads to improved performance. This trend
is particularly pronounced for PBA in comparison to SBA. The
disparity between the two algorithms, as indicated by the relative
improvement (Rel.∆BER and Rel.∆ECC), becomes more prominent
with greater quantities of target chip data. For example, the ∆BER
value with the 100/0 dataset exhibits the largest absolute value
among all the ∆BER and Rel.∆BER values across different dataset
ratios, highlighting the substantial impact of increased target chip
data on the performance differentiation between the algorithms.

B. Dataset Size and Level Allocation

We next investigate the impact of the dataset size on the fidelity of
the level allocation. We construct datasets that contain 25%, 50%,
75%, 90%, and 100% of the original chip characterization data.
Because these smaller datasets are sampled from the original dataset,
we repeat the random sampling process 10 times and report the mean
and standard deviation (σ) of the BERs across the 10 trials. Randomly
sampling data represents characterizing a subset of cells’ behavior,
and this can show the algorithm’s stability given the randomness in
selecting cells for data collection. Table VI presents the bit error rates
(BER) associated with different characterization dataset sizes. For the
100% dataset, σ = 0% as there is no sampling.
Observation 9. PBA finds lower-error level allocations than SBA
across different sizes of the dataset, and PBA better exploits the
behavior captured in large datasets than SBA. PBA attains 1%-
43% lower BERs than SBA across all reduced dataset sizes, and
the improvement over SBA is larger given more data.
Observation 10. PBA generally produces level allocations with
BERs that are slightly more stable or at parity with SBA on smaller
datasets. Intuitively, the BER of the level allocation is less stable for
smaller dataset (i.e., larger σ is observed on smaller dataset). PBA’s
stability is generally better than or as good as SBA’s stability (except
for one data point of 75% dataset on Ember2).

IX. DISCUSSION

Parametrized Distributions. Prior approaches to level allocation
typically work with normal or normal/lognormal distributions that
characterize the mean shift and variance of the read resistance as a
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Ember1 Bit Error Rate Ember1 ECC Overhead Ember2 Bit Error Rate Ember2 ECC Overhead
Dataset sba pba ∆BER Rel.∆ sba pba ∆ECC Rel.∆ sba pba ∆BER Rel.∆ sba pba ∆ECC Rel.∆
100/0 0.74% 0.38% -0.36% -49% 12% 9.1% -2.9% -26% 0.7% 0.37% -0.34% -48% 12% 9% -2.8% -23%
50/50 0.62% 0.46% -0.16% -26% 11% 9.6% -1.4% -13% 0.8% 0.49% -0.31% -29% 13% 10% -2.5% -19%
10/90 0.78% 0.65% -0.13% -17% 12% 11% -1% -8% 0.86% 0.64% -0.22% -26% 13% 11% -1.8% -14%
0/100 0.75% 0.64% -0.11% -15% 12% 11% -1% -8% 1% 0.72% -0.28% -28% 14% 12% -2.1% -15%

Table V: Interchip level allocation comparison (3 bits-per-cell). 100/0 represents 100% target chip’s dataset, and 50/50 represents 50% target
chip’s dataset combined with 50% from the other similar chip.

Ember1 Bit Error Rate Ember1 BER σ Ember2 Bit Error Rate Ember2 BER σ
Dataset sba pba ∆BER Rel.∆ sba pba sba pba ∆BER Rel.∆ sba pba
25% 0.75% 0.74% -0.01% -1% 0.17% 0.17% 0.78% 0.57% -0.21% -27% 0.19% 0.17%
50% 0.76% 0.53% -0.23% -30% 0.10% 0.06% 0.70% 0.50% -0.20% -29% 0.16% 0.12%
75% 0.68% 0.43% -0.26% -38% 0.05% 0.05% 0.68% 0.46% -0.22% -32% 0.08% 0.10%
90% 0.68% 0.42% -0.26% -38% 0.052% 0.029% 0.67% 0.38% -0.29% -43% 0.1% 0.056%
100% 0.74% 0.38% -0.36% -49% 0% 0% 0.7% 0.37% -0.34% -48% 0% 0%

Table VI: Effect of dataset size on level allocation (3 bits-per-cell).

function of the target write resistance (µ(c), σ(c)2) [3], [9], [12]–
[14]. We find that both RRAM conductances and resistances are
highly non-normal and cannot be precisely modeled with a nor-
mal distribution. Under certain conditions, though, the distributional
parameters can reasonably approximate behavior. For example, the
variance and standard deviation can be useful statistical measures
to model the dispersion of a distribution. Practitioners can improve
model fit by fitting data to more sophisticated distributions. Doing so
requires re-engineering the level allocation algorithms and potentially
complicates the algorithm’s structure. In contrast, PBA’s data-driven
approach enables the level allocation algorithm to consider higher-
order statistical characteristics present in the data without changing
the algorithm’s implementation.

Characterization Data. We observe that the composition and size of
the characterization dataset have a substantial impact on the BERs of
the produced level allocations. In Section VIII, we found PBA is able
to identify lower error level allocations when provided with enough
characterization data collected from the target chip and generally
identifies better level allocations with more data.

We acknowledge that, in practice, it may not be feasible to
extensively characterize each fabricated chip to compute a low
error level allocation. However, it may be possible to augment data
without requiring extensive chip characterization. Researchers have
previously leveraged simulation-based data augmentation approaches
to infer larger datasets from small amounts of empirical data [30].
These methods can be applied to generate data for level allocation.

Read Circuit Design. Our method assumes that read circuit non-
idealities (e.g., sense amplifier margin, thermal and voltage noise,
etc.), which may be reduced through enhanced analog circuit design,
are included in the characterization datasets. However, one can
separate out their impact and directly model their behavior if well
known by adding a read margin to account for their effects as is done
in SBA [9]. Such an approach can allow for read circuit refinements
to increase effective storage density. We anticipate that this capability
can be added to PBA with minor changes to how the non-overlapping
levels are computed in our algorithm.

Temperature and Wear. Currently, PBA supports data queries over
write centers and relaxation times and provides guidance for char-
acterizing the write algorithms, read circuitry, process variation, and
relaxation. We anticipate that PBA can be extended to support the
characterization of device wear and temperature changes. In these
usages, the data provider will accept additional parameters that
capture different operating temperatures and wear conditions, and the

allocation algorithm will retrieve data from the provider that reflects
the desired operating conditions.
Other Resistive Memory Technologies. While we focus on applying
PBA to RRAM, the PBA level allocation approach can be applied
to other resistive memory technologies. Because PBA does not fit
data to a parameterized distribution, it can potentially be applied
to memories that exhibit a number of non-standard distributional
characteristics.

X. RELATED WORK

Researchers have used multiple-bits-per-cell (MPBC) storage for
various applications [2], [9], [12]–[14], [17], [31]–[33]. Researchers
have extensively studied the device modeling and statistical distri-
butions present in RRAM and phase-change memory (PCM) storage
arrays [1]–[3], [22], [34]–[36]. Level allocation algorithms in prior
work typically work with a known distribution [3], [9], [12]–[14],
[37] of the observed analog behavior and leverage the distribution’s
parameters for level allocation. Works applying MBPC storage for
various applications often discuss the data distribution used without
explaining the level allocation algorithm in detail, e.g., prior work on
PCM-based image storage [38], RRAM-based approximate comput-
ing [32], and RRAM-based variation-aware level allocation [35]. In
this work, we develop an algorithm that makes no assumptions about
the distribution of the collected data or any device-specific statistical
trends. Our work can reduce the storage overhead for applications
using multiple-bits-per-cell storage.

XI. CONCLUSION

There has been a proliferation of emerging resistance-based non-
volatile storage technologies that have the potential to deliver un-
precedented storage and performance benefits – these technologies
can deliver further density improvements if used as a multiple-
bits-per-cell (MBPC) storage medium. In this paper, we presented
PBA, a percentile-based level allocation algorithm that computes
level allocations directly on characterization data. PBA is able to
deliver higher accuracy MBPC storage schemes than state-of-the-art
allocation algorithms that fit data to parametrized distributions. We
believe that our approach can potentially generalize to a broader set
of emerging memory technologies that support MBPC storage.
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