
Hierarchy-Aware Regression Test Prioritization
Hao Wang
UC Berkeley

Berkeley, CA, USA
hwang628@berkeley.edu

Pu (Luke) Yi
Stanford University
Stanford, CA, USA
lukeyi@stanford.edu

Jeremias Parladorio
National University of Rio Cuarto

Rio Cuarto, Argentina
jeremiasparladorio@gmail.com

Wing Lam
George Mason University

Fairfax, VA, USA
winglam@gmu.edu

Darko Marinov
University of Illinois

Urbana-Champaign, IL, USA
marinov@illinois.edu

Tao Xie
Peking University

Beijing, China
taoxie@pku.edu.cn

Abstract—Regression testing is widely used to check whether
software changes lead to test failures. Regression Test Prioriti-
zation (RTP) aims to order tests such that tests that are more
likely to fail are run earlier. Prior RTP techniques—which we call
hierarchy-unaware (HU)—ignored an important aspect: real test
suites are organized hierarchically, and individual tests belong
to composites that can be hierarchically nested. Prior RTP work
overlooked the runtime cost to switch across hierarchical test
compositesand used the APFDc metric, which represents the
runtime of tests till test failures, to rank orders generated by
RTP techniques. However, APFDc can misleadingly rank orders
if their runtimes differ (e.g., two orders may have different
numbers of composite switches and, consequently, runtimes).
To account for runtime differences, we propose a new metric,
HAPFDc. Unlike APFDc, HAPFDc enables proper comparison
of test orders with different runtimes by “extending” runtimes as
needed. To reduce the cost of composite switching, we introduce
hierarchy-aware (HA) RTP by presenting meta-techniques that
first prioritize composites and then tests within composites. We
evaluate HA RTP on test classes in multi-module Java and Maven
projects from two large datasets used in prior work. The results
show that our HA RTP improves both HAPFDc values and time-
based metrics over HU RTP.

Index Terms—regression test prioritization, test interleaving

I. INTRODUCTION

Regression testing is an important activity to check whether
software changes lead to test failures. Researchers have de-
veloped many techniques to improve regression testing, and
several surveys [1–5] present overviews of the proposed tech-
niques. Regression Test Prioritization (RTP) [6, 7] aims to
order, i.e., prioritize, tests in a test suite to find test failures
sooner rather than later. The motivation is to provide faster
feedback to developers, so they can debug test failures [8]
as soon as possible. Conceptually, RTP techniques use infor-
mation from one or more historical runs of the test suite,
or from recent changes, to prioritize the test suite for the
current changes. Various techniques use different kinds of
information, e.g., code coverage [6, 9], historical failures [10],
timing information [8], and black-box information [11], along
with different kinds of technologies, e.g., machine learning [5,
12, 13], information retrieval [14, 15], and peer sharing [16].

Since the two seminal papers [6, 7], RTP has been studied
with increasingly realistic experiments, substantially improv-
ing four main aspects of the studies. Specifically, to evaluate

RTP techniques, earlier work used (1) automatically generated
tests instead of manually written tests [17], (2) simulated
software evolution instead of real evolution [18], (3) mutants
or manually seeded faults instead of real test failures from
continuous-integration systems [13, 14, 19–22], and (4) met-
rics based on the number of test runs till test failures, such as
Average Percentage of Faults Detected (APFD) [9], instead of
metrics based on the runtime of tests till test failures, such as
cost-cognizant APFD (APFDc) [23].

However, all RTP techniques from prior work have ignored
the fact that software projects organize tests hierarchically,
akin to the composite design pattern [24], and switching test
execution across composites incurs runtime cost. We call prior
work Hierarchy-Unaware (HU) RTP. We define a test compos-
ite as a set of tests that share the same running configuration.
For example, most Java projects use a testing framework,
such as JUnit [25] or TestNG [26], and a build system,
such as Maven [27] or Gradle [28]: individual JUnit/TestNG
test methods belong to test classes, which themselves belong
to Maven/Gradle modules that provide the running config-
uration1. Thus, we view the test suite for a multi-module
Maven project as several test composites, one for each module.
Running test classes in a prioritized order incurs additional
cost when consecutive tests belong to different modules.

While newer RTP work evaluates techniques using metrics
(e.g., APFDc [23]) that better represent real time, their
experiments [13, 14, 16, 19, 20, 30] ignored the runtime cost of
Switching Across Tests Composites (SATC), which includes
not only the runtime to launch a new virtual machine but also
the runtime to load classes, set up and tear down tests, etc. In
fact, the SATC cost is closely related to the cost of running
each test in a new JVM: studies [31–35] have shown that
such cost can be orders of magnitude higher than running
multiple tests in one JVM. The problem of SATC costs has
been considered in pairwise testing [36], but not in prior RTP
work. By ignoring SATC costs, prior RTP work can incorrectly
rank RTP techniques [13, 14]. Only one prior study [14] used

1Our evaluation uses Java projects with JUnit and Maven, but the hier-
archical organization is widespread in other programming languages, testing
frameworks, and build systems, e.g., pytest [29] for Python has test functions
that belong to test classes that belong to test files that belong to test directories.

343

2024 IEEE 35th International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/24/$31.00 ©2024 IEEE
DOI 10.1109/ISSRE62328.2024.00041

