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Emerging Hardware Technologies

Emerging hardware technologies promise to revolutionize computation

● Improved performance and energy consumption
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Emerging Hardware Technologies

Emerging hardware technologies promise to revolutionize computation

● Improved performance and energy consumption

● Higher storage density and faster memory access times

● Dense 3D interconnect; significantly higher bandwidths
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Emerging Hardware Technologies

These emerging technologies are highly promising, but are less reliable than conventional 

memory/compute substrates and occasionally corrupt bits.

Why does this occur?  Conformational changes in materials, static errors from immature 

fabrication processes, sensitivities to the environment.
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Performing Computation on Emerging Hardware 
Technologies

Performing classical computation on these hardware substrates is challenging because where 

corruptions occur in the program & the program data has a substantial impact on the computed result.
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In classical computation, some bits are more 
important than others…

Classical computations are highly sensitive to bit corruptions if the 
“wrong” bits are corrupted.
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In classical computation, some bits are more 
important than others…

Classical computations are highly sensitive to bit corruptions if the 
“wrong” bits are corrupted.

Over the years a number of error mitigation techniques have been 
developed to work around the problem. 

E.g., error-correcting codes, precise/approximate data partitioning, 
redundant computation.
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In classical computation, some bits are more 
important than others…

Classical computations are highly sensitive to bit corruptions if the 
“wrong” bits are corrupted.

These mitigations introduce hardware and software overheads that 
affect projected energy/performance improvements.
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In classical computation, some bits are more 
important than others...

Classical computations are highly sensitive to bit corruptions if the 
“wrong” bits are corrupted.

What else can be done? We can change how we perform 
computation.
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In classical computation, some bits are more 
important than others…

Classical computations are highly sensitive to bit corruptions if the 
“wrong” bits are corrupted.

What else can be done? We can change how we perform 
computation.

This work focuses on hyperdimensional computation, a 
computational model that is naturally resilient to error.
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What is hyperdimensional computation?

[0,1,1,1,0,.........,0,1,0]

Hyperdimensional computing (HDC) is a highly error-resilient 
novel computational paradigm that originated from the cognitive 
science community.

 The basic unit of information is a hypervector, a 
high-dimensional binary vector.1

1. This talk overviews Binary Spatter Code (BSC), a variant of HDC that works with dense binary hypervectors. 12



What is hyperdimensional computation?

In HD computing, information is evenly distributed across bits, 
so all bits are equally important (or unimportant) to the 
computation.

[0,1,1,1,0,.........,0,1,0]

13



What is hyperdimensional computation?

[0,1,0,1,0,.........,0,0,0]

In HD computing, information is evenly distributed across bits, 
so all bits are equally important (or unimportant) to the 
computation.

Doesn’t matter where a bit corruption occurs!
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What is hyperdimensional computation?

In HD computing, information is encoded in the hamming 
distances between hypervectors. 
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What is hyperdimensional computation?

[0,1,0,1,0,.........,0,0,0]

In HD computing, information is encoded in the hamming 
distances between hypervectors. 

[0,1,1,1,0,.........,0,1,0]

Many bit corruptions are required to make a non-negligible change 
in the distance. Highly error resilient!
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Hyperdimensional Computation

Hyperdimensional Computation (HDC) can perform a variety of tasks

● Data structures - construction and querying of database, graph, 

tree, finite automata, etc.

● Processing tasks - information retrieval, load balancing, analogical 

reasoning

● Machine learning - time-series data classification/edge/low-power
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Heim at a First Glance

We present Heim, the first static analysis-based optimizer for 
optimizing hyperdimensional computations to execute with 
acceptable accuracy on emerging hardware technologies.
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Heim at a First Glance

We present Heim, the first static analysis-based optimizer for 
optimizing hyperdimensional computations to execute with 
acceptable accuracy on emerging hardware technologies.

Heim provides accuracy guarantees over all data structures and queries 
captured in a user-provided specification, while minimizing resource usage
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Heim at a First Glance

We present Heim, the first static analysis-based optimizer for 
optimizing hyperdimensional computations to execute with 
acceptable accuracy on emerging hardware technologies.

Heim provides accuracy guarantees over all data structures and queries 
captured in a user-provided specification, while minimizing resource usage

Heim’s analysis is static, and completes in milliseconds at compile-time.
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Heim at a First Glance

We present Heim, the first static analysis-based optimizer for 
optimizing hyperdimensional computations to execute with 
acceptable accuracy on emerging hardware technologies.

Heim is hardware-aware and optimizes computations to execute 
accurately on emerging hardware technologies.
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Hyperdimensional 
Computation by Example

22



Knowledge Graph Data structure. directed graph with labeled edges and 
nodes.
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Student knowledge graph

Node Label = “concept”

Edge Label = “relation”

Edge Direction = “interaction”



Query. How many 
students like apples?

Result.
Two students
# of students with “likes” 
relations that point to the 
Apple concept.
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Edge Queries. Ask about relationships between nodes, or concepts.
 



We want to execute the “apples” query on a piece of hardware that stores information 
in an  Two-Bit-Per-Cell Resistive RAM (RRAM) storage array, an information-dense 

emerging memory technology that is prone to error.
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per-bit error rate of 2.15%



Data structure. directed graph with labeled edges and nodes.

How do we encode this data structure 
using HD computing? 
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Data structure. directed graph with labeled edges and nodes.

How do we encode this data structure 
using HD computing? 

First, we need to construct the atomic 
elements of knowledge graph: 
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Concepts = { jack, mary, apple, tennis, banana} 

Relations = {likes,plays} 

Interactions= {act,target} 



Data structure. directed graph with labeled edges and nodes.

How do we encode this data structure 
using HD computing? 

First, we need to construct the atomic 
elements of knowledge graph: 
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How do we do this?

Concepts = { jack, mary, apple, tennis, banana} 

Relations = {likes,plays} 

Interactions= {act,target} 



We generate a random binary vector, or atomic  hypervector, for each type of node 
label (concept), edge label (relation), and edge direction in the knowledge graph.
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Concepts = { jack, mary, apple, tennis, banana} 

Relations = {likes,plays} 

Interactions= {act,target} 

[0,1,1,1,0,.........,0,1,0]

apple

Sample random binary 
vectors



We generate a random binary vector, or  hypervector, for each type of node label 
(concept), edge label (relation), and edge direction in the knowledge graph.

[0,1,1,1,0,.........,0,1,0]

apple
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[1,0,0,1,1,.........,1,0,0]

plays

Hamming distance (HD) between 
atomic hypervectors is large! 

Conceptually, makes sense. The 
“apples” node and “plays” are not 
related at all.



Data structure. directed graph with labeled edges and nodes.

Now we’re ready to encode the data 
structure as a hypervector using HD 
computing.
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Data structure. directed graph with labeled edges and nodes.

Now we’re ready to encode the data 
structure as a hypervector using HD 
computing.

We will be building the data structure from 
the bottom-up.

Edges → edge sets → graph
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Data structure. directed graph with labeled edges and nodes.

Now we’re ready to encode the data 
structure as a hypervector using HD 
computing.
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How do we encode information? We 
will compute over the atomic 
hypervectors!



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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We want to construct each labeled, directed edge 
relative to a particular node  

<target,likes,jack> points to Mary node



For each node, we construct each 
graph edge by binding together the 
interaction, relation, and concept 
hypervectors.

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 

hv1 = target ⊙ likes ⊙ jack

binding operation
XOR
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<target,likes,jack> points to Mary node



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 

hv1 = target ⊙ likes ⊙ jack

Binding creates a hypervector that is dissimilar to 

the input hypervecvectors

HD(hv1,target) is large

HD(hv1,likes) is large

HD(hv1,jack) is large

36

<target,likes,jack> points to Mary node



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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We construct a edge hypervector for 
each edge that is connected to the 
mary node. 

hv1 = target ⊙ likes ⊙ jack <target,likes,jack>



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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We construct a edge hypervector for 
each edge that is connected to the 
mary node. 

hv1 = target ⊙ likes ⊙ jack

hv2 = act ⊙ likes ⊙ apple

<target,likes,jack>

<act,likes,apple>



hv1 = target ⊙ likes ⊙ jack

hv2 = act ⊙ likes ⊙ apple

<target,likes,jack>

<act,likes,apple>

hv3 = act ⊙ plays ⊙ tennis <act,plays,tennis>

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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We construct a edge hypervector for 
each edge that is connected to the 
mary node. 



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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{ <target,likes,jack>, <act,likes,apple>, <act,plays,tennis> }

We next want to create a set of edges that are connected 
to the mary node.



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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{ <target,likes,jack>, <act,likes,apple>, <act,plays,tennis> }

We next want to create a set of edges that are connected 
to the mary node.

hv_mary = hv1 + hv2 + hv3

bundling operation
Bitwise Majority

To accomplish this, we bundle the edge hypervectors 
together



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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{ <target,likes,jack>, <act,likes,apple>, <act,plays,tennis> }

We next want to create a set of edges that are connected 
to the mary node.

hv_mary = hv1 + hv2 + hv3

Bundling creates a hypervector similar to the input 
hypervectors. 

HD(hv_mary,hv1) is small 
HD(hv_mary,hv2) is small 
HD(hv_mary,hv3) is small 



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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{ <target,likes,jack>, <act,likes,apple>, <act,plays,tennis> }

We next want to create a set of edges that are connected 
to the mary node.

hv_mary = hv1 + hv2 + hv3

We can use the hamming distance to query if an edge 
belongs to an edge set!

HD(hv_mary, act ⊙ likes ⊙ apple) -> small, in set
HD(hv_mary, act ⊙ likes ⊙ apple) -> large, NOT in set



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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Next, we build a edge set hypervector for each node in 
the graph.

hv_mary = hv1 + hv2 + hv3

hv_jack = hv4 + hv5 + hv6 + hv7

hv_tennis = hv8 + hv9 

hv_banana = hv10

hv_apple = hv11 + hv12



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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Now we can query for edges. Let’s test for the 
“likes-apples edge”:

hv_mary = hv1 + hv2 + hv3

hv_jack = hv4 + hv5 + hv6 + hv7

hv_tennis = hv8 + hv9 

hv_banana = hv10

hv_apple = hv11 + hv12

act ⊙ likes ⊙ apple<act,likes,apple>



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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We then perform test for an edge by computing the 
hamming distance between query edge and each edge set.

HD(hv_mary, act ⊙ likes ⊙ apple)

HD(hv_jack, act ⊙ likes ⊙ apple)

HD(hv_tennis, act ⊙ likes ⊙ apple)

HD(hv_banana, act ⊙ likes ⊙ apple)

HD(hv_apple, act ⊙ likes ⊙ apple)



Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays} 
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If the hamming distance is small, the edge is contained 
within the node’s edge set.

HD(hv_mary, act ⊙ likes ⊙ apple)

HD(hv_jack, act ⊙ likes ⊙ apple)

HD(hv_tennis, act ⊙ likes ⊙ apple)

HD(hv_banana, act ⊙ likes ⊙ apple)

HD(hv_apple, act ⊙ likes ⊙ apple)

-> small distance, in set!

-> small distance, in set!



So, there is some missing information..

48

What distance threshold should we use? How do we 
distinguish between a small and large distance?



So, there is some missing information..
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What distance threshold should we use? How do we 
distinguish between a small and large distance?

How big are these hypervectors 
exactly?



How are the thresholds and size set currently?

50

Currently, practitioners dynamically tune the 
parameters with Monte Carlo simulations

Lack of accuracy guarantees

May not generalize well

Computationally intensive



How are the thresholds and size set currently?
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Currently, practitioners dynamically tune the 
parameters with Monte Carlo simulations

Lack of accuracy guarantees

May not generalize well

Computationally intensive

We present Heim, a static optimizer that 
analytically derives the size and distance 

thresholds for an HD computation.



Static parameter 
optimization with Heim
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Heim works with a program specification that describes the space of HD data 
structures to analyze and the desired query accuracies.

Heim Optimizer
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Overview of Heim’s System Structure

Heim program specification

Knowledge graph specification



Heim chooses a hypervector size and a set of distance thresholds that satisfies all 
query accuracy constraints in the specification. 

Heim Optimizer

54

Overview of Heim’s System Structure

Query edges with 99% accuracy.

Heim program specification



Heim’s accuracy guarantee: on expectation, the accuracy of each described query will 
converge to the accuracy specified by the most restrictive accuracy constraint.

Heim Optimizer
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Overview of Heim’s System Structure

Query edges with 99% accuracy.

Heim program specification



Heim ensures this accuracy guarantee holds over all queries and data structures 
described in the Heim specification. 

Heim Optimizer
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Overview of Heim’s System Structure

Edge queries on graphs with maximum 
node cardinality of 4.

Heim program specification



Heim accepts a hardware specification which specifies the bit error rates of different storage 
and compute elements in the hardware architecture. Heim’s accuracy guarantees hold in the 
presence of hardware error. 

Heim Optimizer
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Overview of Heim’s System Structure

Two-bits-per-cell Resistive Memory Architecture

Edge sets stored in resistive memory



Heim analytically derives the optimal distance thresholds and the minimum 
hypervector size required to meet the target accuracy constraints on the target 
hardware.

Heim Optimizer

optimal hypervector size(s)
N = 173, 1060, …

optimal distance thresholds
thr = 0.45, 0.413, …
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Overview of Heim’s System Structure



Heim’s implementation consists of an analytical model of 
hypervector-query hamming distances for the given data structure, 
parametrized over hypervector size.

Analytical 
Model

Accuracy 
Analysis

Optimization 
Algorithm

Hypervector size N

Hypervector size N
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Overview of Heim’s System Structure



..an accuracy analysis that derives query accuracies from the 
analytical model.

Analytical 
Model

Accuracy 
Analysis

Optimization 
Algorithm

Hypervector size N

Hypervector size N
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Overview of Heim’s System Structure



..and an optimization algorithm that uses the accuracy analysis to find 
the smallest hypervector size that delivers the desired accuracy. 

Analytical 
Model

Accuracy 
Analysis

Optimization 
Algorithm

Hypervector size N

Hypervector size N
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Overview of Heim’s System Structure



Optimization 
Algorithm

Analytical 
Model

Accuracy 
Analysis
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Overview of Heim’s System Structure

Match Distribution Not-match Distribution

The analytical model precisely models the 
distribution of hamming distances for 
matching and non-matching queries.



Optimization 
Algorithm

Analytical 
Model

Accuracy 
Analysis
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Overview of Heim’s System Structure

Match Distribution Not-match Distribution

We observe distance distributions because 
there is non-determinism introduced by 
atomic hypervector sampling and hardware 
error.



Optimization 
Algorithm

Analytical 
Model

Accuracy 
Analysis
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Overview of Heim’s System Structure

Match Distribution Not-match Distribution

The distributions are normally distributed. We 
derive closed-form formulas for the mean and 
variance of the matching/non-matching queries, 
parametrized over hypervector size.

Expected mean distance from 
an edge to a matching m-edge 

set



Optimization 
Algorithm

Analytical 
Model

Accuracy 
Analysis
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Overview of Heim’s System Structure

Match Distribution Not-match Distribution

To model hardware error, an upper bound on 
the bit flip probability is derived from the 
hardware spec and applied to the analytical 
model.

An upper bound of 
bit flip rate



Optimization 
Algorithm

Analytical 
Model

Accuracy 
Analysis

Derive distance 
distributions

Derive optimal 
thresholds and 

expected accuracy
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Overview of Heim’s System Structure

Threshold

To perform accuracy analysis, we derive 
closed-form formulas for the expected accuracy and 
compute the optimal threshold from these formulae. 



Summary of Theoretical Formulations
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To develop this analysis, we apply results from the theoretical cognitive science 
community and contribute new derivations. 



How does Heim perform?
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Sound parameter optimization with Heim

We evaluated Heim on five hyperdimensional computing-based data structures, 
parametrized with five different sizes.

Benchmark 
data structures
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Sound parameter optimization with Heim

We evaluated Heim on five hyperdimensional computing-based data structures, 
parametrized with five different sizes.

We parametrize 
data structures 
with different 

sizes.

70



Sound parameter optimization with Heim

We evaluated Heim on five hyperdimensional computing-based data structures, 
parametrized with five different sizes.

We compared against dynamic tuning (dt-all) and other baselines, and configured all 
methods to deliver 99% query accuracy.

We parametrize 
data structures 
with different 

sizes.
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Heim runs in milliseconds, and is orders of magnitude faster than dynamic 
tuning-based approaches. (2-5 orders of magnitude faster)

Optimization runtime 
for knowledge graph

Y-axis is log-scale
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Optimization Runtime



Heim runs in milliseconds, and is orders of magnitude faster than dynamic 
tuning-based approaches. (2-5 orders of magnitude faster)

Optimization runtime 
for knowledge graph

Y-axis is log-scale
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Optimization Runtime

Heim’s analysis is 
analytical, the runtime 
does not depend on the 

data structure size



Heim-derived thresholds and sizes consistently meet accuracy target 
(above shaded region).

We sample 100 random data structures for each benchmark
Y-axis is median accuracy, error bars are quartiles.
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Accuracy



For several benchmarks, Heim is able to find parameterizations that dynamic 
tuning cannot find. 

We sample 100 random data structures for each benchmark
Y-axis is median accuracy, error bars are quartiles.
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Accuracy



99% accuracy

3BPC BER1

0.1273

2BPC BER1

0.0215
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We can perform perform hardware-aware parameter optimization, and use the derived 
parameterizations to systematically analyze the tradeoffs between different device 

technologies / usages of device technologies.

1. Anjiang Wei, Akash Levy, Pu (Luke) Yi, Robert Radway, Priyanka Raina, Subhasish Mitra, and Sara Achour. 2023. PBA: Percentile-Based Level Allocation for 
Multiple-Bits-Per-Cell RRAM. In ICCAD. 

Optimal RRAM Density at Iso-Accuracy



99% accuracy

3BPC BER1

0.1273

2BPC BER1

0.0215
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We can perform perform hardware-aware parameter optimization, and use the derived 
parameterizations to systematically analyze the tradeoffs between different device 

technologies / usages of device technologies.

1. Anjiang Wei, Akash Levy, Pu (Luke) Yi, Robert Radway, Priyanka Raina, Subhasish Mitra, and Sara Achour. 2023. PBA: Percentile-Based Level Allocation for 
Multiple-Bits-Per-Cell RRAM. In ICCAD. 

Optimal RRAM Density at Iso-Accuracy

In this case study, 2BPC ReRAM outperforms 3BPC ReRAM, 3BPC ReRAM worse than conventional memory 
at iso-accuracy across all hardware-optimized data structures. Systematic applications-to-devices analysis!



Conclusion

We presented Heim, the first static analysis framework for hyper-dimensional computation 

that minimizes the resource usage in presence of hardware error

● Heim achieves better accuracy than dynamic tuning and offers guarantees, and is orders 

of magnitude faster

● Heim enables iso-accuracy systematic application-to-device analysis

We envision Heim as a sound core and basis for future analyses that may be unsound but 

apply to more practical applications
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