
Hardware-Aware Static Optimization of
Hyperdimensional Computations

Pu (Luke) Yi and Sara Achour

1

Emerging Hardware Technologies

Emerging hardware technologies promise to revolutionize computation

● Improved performance and energy consumption

2

Emerging Hardware Technologies

Emerging hardware technologies promise to revolutionize computation

● Improved performance and energy consumption

● Higher storage density and faster memory access times

3

Emerging Hardware Technologies

Emerging hardware technologies promise to revolutionize computation

● Improved performance and energy consumption

● Higher storage density and faster memory access times

● Dense 3D interconnect; significantly higher bandwidths

4

Emerging Hardware Technologies

These emerging technologies are highly promising, but are less reliable than conventional

memory/compute substrates and occasionally corrupt bits.

Why does this occur? Conformational changes in materials, static errors from immature

fabrication processes, sensitivities to the environment.

5

Performing Computation on Emerging Hardware
Technologies

Performing classical computation on these hardware substrates is challenging because where

corruptions occur in the program & the program data has a substantial impact on the computed result.

6

[0,1,1,1,0,.....,0,1,0]
Data
Structures

length of data
structure

In classical computation, some bits are more
important than others…

Classical computations are highly sensitive to bit corruptions if the
“wrong” bits are corrupted.

7

In classical computation, some bits are more
important than others…

Classical computations are highly sensitive to bit corruptions if the
“wrong” bits are corrupted.

Over the years a number of error mitigation techniques have been
developed to work around the problem.

E.g., error-correcting codes, precise/approximate data partitioning,
redundant computation.

8

In classical computation, some bits are more
important than others…

Classical computations are highly sensitive to bit corruptions if the
“wrong” bits are corrupted.

These mitigations introduce hardware and software overheads that
affect projected energy/performance improvements.

9

In classical computation, some bits are more
important than others...

Classical computations are highly sensitive to bit corruptions if the
“wrong” bits are corrupted.

What else can be done? We can change how we perform
computation.

10

In classical computation, some bits are more
important than others…

Classical computations are highly sensitive to bit corruptions if the
“wrong” bits are corrupted.

What else can be done? We can change how we perform
computation.

This work focuses on hyperdimensional computation, a
computational model that is naturally resilient to error.

11

What is hyperdimensional computation?

[0,1,1,1,0,.........,0,1,0]

Hyperdimensional computing (HDC) is a highly error-resilient
novel computational paradigm that originated from the cognitive
science community.

 The basic unit of information is a hypervector, a
high-dimensional binary vector.1

1. This talk overviews Binary Spatter Code (BSC), a variant of HDC that works with dense binary hypervectors. 12

What is hyperdimensional computation?

In HD computing, information is evenly distributed across bits,
so all bits are equally important (or unimportant) to the
computation.

[0,1,1,1,0,.........,0,1,0]

13

What is hyperdimensional computation?

[0,1,0,1,0,.........,0,0,0]

In HD computing, information is evenly distributed across bits,
so all bits are equally important (or unimportant) to the
computation.

Doesn’t matter where a bit corruption occurs!

14

What is hyperdimensional computation?

In HD computing, information is encoded in the hamming
distances between hypervectors.

15

What is hyperdimensional computation?

[0,1,0,1,0,.........,0,0,0]

In HD computing, information is encoded in the hamming
distances between hypervectors.

[0,1,1,1,0,.........,0,1,0]

Many bit corruptions are required to make a non-negligible change
in the distance. Highly error resilient!

16

Hyperdimensional Computation

Hyperdimensional Computation (HDC) can perform a variety of tasks

● Data structures - construction and querying of database, graph,

tree, finite automata, etc.

● Processing tasks - information retrieval, load balancing, analogical

reasoning

● Machine learning - time-series data classification/edge/low-power

17

Heim at a First Glance

We present Heim, the first static analysis-based optimizer for
optimizing hyperdimensional computations to execute with
acceptable accuracy on emerging hardware technologies.

18

Heim at a First Glance

We present Heim, the first static analysis-based optimizer for
optimizing hyperdimensional computations to execute with
acceptable accuracy on emerging hardware technologies.

Heim provides accuracy guarantees over all data structures and queries
captured in a user-provided specification, while minimizing resource usage

19

Heim at a First Glance

We present Heim, the first static analysis-based optimizer for
optimizing hyperdimensional computations to execute with
acceptable accuracy on emerging hardware technologies.

Heim provides accuracy guarantees over all data structures and queries
captured in a user-provided specification, while minimizing resource usage

Heim’s analysis is static, and completes in milliseconds at compile-time.

20

Heim at a First Glance

We present Heim, the first static analysis-based optimizer for
optimizing hyperdimensional computations to execute with
acceptable accuracy on emerging hardware technologies.

Heim is hardware-aware and optimizes computations to execute
accurately on emerging hardware technologies.

21

Hyperdimensional
Computation by Example

22

Knowledge Graph Data structure. directed graph with labeled edges and
nodes.

23

Student knowledge graph

Node Label = “concept”

Edge Label = “relation”

Edge Direction = “interaction”

Query. How many
students like apples?

Result.
Two students
of students with “likes”
relations that point to the
Apple concept.

24

Edge Queries. Ask about relationships between nodes, or concepts.

We want to execute the “apples” query on a piece of hardware that stores information
in an Two-Bit-Per-Cell Resistive RAM (RRAM) storage array, an information-dense

emerging memory technology that is prone to error.

25

per-bit error rate of 2.15%

Data structure. directed graph with labeled edges and nodes.

How do we encode this data structure
using HD computing?

26

Data structure. directed graph with labeled edges and nodes.

How do we encode this data structure
using HD computing?

First, we need to construct the atomic
elements of knowledge graph:

27

Concepts = { jack, mary, apple, tennis, banana}

Relations = {likes,plays}

Interactions= {act,target}

Data structure. directed graph with labeled edges and nodes.

How do we encode this data structure
using HD computing?

First, we need to construct the atomic
elements of knowledge graph:

28

How do we do this?

Concepts = { jack, mary, apple, tennis, banana}

Relations = {likes,plays}

Interactions= {act,target}

We generate a random binary vector, or atomic hypervector, for each type of node
label (concept), edge label (relation), and edge direction in the knowledge graph.

29

Concepts = { jack, mary, apple, tennis, banana}

Relations = {likes,plays}

Interactions= {act,target}

[0,1,1,1,0,.........,0,1,0]

apple

Sample random binary
vectors

We generate a random binary vector, or hypervector, for each type of node label
(concept), edge label (relation), and edge direction in the knowledge graph.

[0,1,1,1,0,.........,0,1,0]

apple

30

[1,0,0,1,1,.........,1,0,0]

plays

Hamming distance (HD) between
atomic hypervectors is large!

Conceptually, makes sense. The
“apples” node and “plays” are not
related at all.

Data structure. directed graph with labeled edges and nodes.

Now we’re ready to encode the data
structure as a hypervector using HD
computing.

31

Data structure. directed graph with labeled edges and nodes.

Now we’re ready to encode the data
structure as a hypervector using HD
computing.

We will be building the data structure from
the bottom-up.

Edges → edge sets → graph

32

Data structure. directed graph with labeled edges and nodes.

Now we’re ready to encode the data
structure as a hypervector using HD
computing.

33

How do we encode information? We
will compute over the atomic
hypervectors!

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

34

We want to construct each labeled, directed edge
relative to a particular node

<target,likes,jack> points to Mary node

For each node, we construct each
graph edge by binding together the
interaction, relation, and concept
hypervectors.

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

hv1 = target ⊙ likes ⊙ jack

binding operation
XOR

35

<target,likes,jack> points to Mary node

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

hv1 = target ⊙ likes ⊙ jack

Binding creates a hypervector that is dissimilar to

the input hypervecvectors

HD(hv1,target) is large

HD(hv1,likes) is large

HD(hv1,jack) is large

36

<target,likes,jack> points to Mary node

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

37

We construct a edge hypervector for
each edge that is connected to the
mary node.

hv1 = target ⊙ likes ⊙ jack <target,likes,jack>

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

38

We construct a edge hypervector for
each edge that is connected to the
mary node.

hv1 = target ⊙ likes ⊙ jack

hv2 = act ⊙ likes ⊙ apple

<target,likes,jack>

<act,likes,apple>

hv1 = target ⊙ likes ⊙ jack

hv2 = act ⊙ likes ⊙ apple

<target,likes,jack>

<act,likes,apple>

hv3 = act ⊙ plays ⊙ tennis <act,plays,tennis>

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

39

We construct a edge hypervector for
each edge that is connected to the
mary node.

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

40

{ <target,likes,jack>, <act,likes,apple>, <act,plays,tennis> }

We next want to create a set of edges that are connected
to the mary node.

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

41

{ <target,likes,jack>, <act,likes,apple>, <act,plays,tennis> }

We next want to create a set of edges that are connected
to the mary node.

hv_mary = hv1 + hv2 + hv3

bundling operation
Bitwise Majority

To accomplish this, we bundle the edge hypervectors
together

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

42

{ <target,likes,jack>, <act,likes,apple>, <act,plays,tennis> }

We next want to create a set of edges that are connected
to the mary node.

hv_mary = hv1 + hv2 + hv3

Bundling creates a hypervector similar to the input
hypervectors.

HD(hv_mary,hv1) is small
HD(hv_mary,hv2) is small
HD(hv_mary,hv3) is small

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

43

{ <target,likes,jack>, <act,likes,apple>, <act,plays,tennis> }

We next want to create a set of edges that are connected
to the mary node.

hv_mary = hv1 + hv2 + hv3

We can use the hamming distance to query if an edge
belongs to an edge set!

HD(hv_mary, act ⊙ likes ⊙ apple) -> small, in set
HD(hv_mary, act ⊙ likes ⊙ apple) -> large, NOT in set

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

44

Next, we build a edge set hypervector for each node in
the graph.

hv_mary = hv1 + hv2 + hv3

hv_jack = hv4 + hv5 + hv6 + hv7

hv_tennis = hv8 + hv9

hv_banana = hv10

hv_apple = hv11 + hv12

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

45

Now we can query for edges. Let’s test for the
“likes-apples edge”:

hv_mary = hv1 + hv2 + hv3

hv_jack = hv4 + hv5 + hv6 + hv7

hv_tennis = hv8 + hv9

hv_banana = hv10

hv_apple = hv11 + hv12

act ⊙ likes ⊙ apple<act,likes,apple>

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

46

We then perform test for an edge by computing the
hamming distance between query edge and each edge set.

HD(hv_mary, act ⊙ likes ⊙ apple)

HD(hv_jack, act ⊙ likes ⊙ apple)

HD(hv_tennis, act ⊙ likes ⊙ apple)

HD(hv_banana, act ⊙ likes ⊙ apple)

HD(hv_apple, act ⊙ likes ⊙ apple)

Interactions= {act,target} Concepts= { jack, mary, apple, tennis, banana} Relations= {likes,plays}

47

If the hamming distance is small, the edge is contained
within the node’s edge set.

HD(hv_mary, act ⊙ likes ⊙ apple)

HD(hv_jack, act ⊙ likes ⊙ apple)

HD(hv_tennis, act ⊙ likes ⊙ apple)

HD(hv_banana, act ⊙ likes ⊙ apple)

HD(hv_apple, act ⊙ likes ⊙ apple)

-> small distance, in set!

-> small distance, in set!

So, there is some missing information..

48

What distance threshold should we use? How do we
distinguish between a small and large distance?

So, there is some missing information..

49

What distance threshold should we use? How do we
distinguish between a small and large distance?

How big are these hypervectors
exactly?

How are the thresholds and size set currently?

50

Currently, practitioners dynamically tune the
parameters with Monte Carlo simulations

Lack of accuracy guarantees

May not generalize well

Computationally intensive

How are the thresholds and size set currently?

51

Currently, practitioners dynamically tune the
parameters with Monte Carlo simulations

Lack of accuracy guarantees

May not generalize well

Computationally intensive

We present Heim, a static optimizer that
analytically derives the size and distance

thresholds for an HD computation.

Static parameter
optimization with Heim

52

Heim works with a program specification that describes the space of HD data
structures to analyze and the desired query accuracies.

Heim Optimizer

53

Overview of Heim’s System Structure

Heim program specification

Knowledge graph specification

Heim chooses a hypervector size and a set of distance thresholds that satisfies all
query accuracy constraints in the specification.

Heim Optimizer

54

Overview of Heim’s System Structure

Query edges with 99% accuracy.

Heim program specification

Heim’s accuracy guarantee: on expectation, the accuracy of each described query will
converge to the accuracy specified by the most restrictive accuracy constraint.

Heim Optimizer

55

Overview of Heim’s System Structure

Query edges with 99% accuracy.

Heim program specification

Heim ensures this accuracy guarantee holds over all queries and data structures
described in the Heim specification.

Heim Optimizer

56

Overview of Heim’s System Structure

Edge queries on graphs with maximum
node cardinality of 4.

Heim program specification

Heim accepts a hardware specification which specifies the bit error rates of different storage
and compute elements in the hardware architecture. Heim’s accuracy guarantees hold in the
presence of hardware error.

Heim Optimizer

57

Overview of Heim’s System Structure

Two-bits-per-cell Resistive Memory Architecture

Edge sets stored in resistive memory

Heim analytically derives the optimal distance thresholds and the minimum
hypervector size required to meet the target accuracy constraints on the target
hardware.

Heim Optimizer

optimal hypervector size(s)
N = 173, 1060, …

optimal distance thresholds
thr = 0.45, 0.413, …

58

Overview of Heim’s System Structure

Heim’s implementation consists of an analytical model of
hypervector-query hamming distances for the given data structure,
parametrized over hypervector size.

Analytical
Model

Accuracy
Analysis

Optimization
Algorithm

Hypervector size N

Hypervector size N

59

Overview of Heim’s System Structure

..an accuracy analysis that derives query accuracies from the
analytical model.

Analytical
Model

Accuracy
Analysis

Optimization
Algorithm

Hypervector size N

Hypervector size N

60

Overview of Heim’s System Structure

..and an optimization algorithm that uses the accuracy analysis to find
the smallest hypervector size that delivers the desired accuracy.

Analytical
Model

Accuracy
Analysis

Optimization
Algorithm

Hypervector size N

Hypervector size N

61

Overview of Heim’s System Structure

Optimization
Algorithm

Analytical
Model

Accuracy
Analysis

62

Overview of Heim’s System Structure

Match Distribution Not-match Distribution

The analytical model precisely models the
distribution of hamming distances for
matching and non-matching queries.

Optimization
Algorithm

Analytical
Model

Accuracy
Analysis

63

Overview of Heim’s System Structure

Match Distribution Not-match Distribution

We observe distance distributions because
there is non-determinism introduced by
atomic hypervector sampling and hardware
error.

Optimization
Algorithm

Analytical
Model

Accuracy
Analysis

64

Overview of Heim’s System Structure

Match Distribution Not-match Distribution

The distributions are normally distributed. We
derive closed-form formulas for the mean and
variance of the matching/non-matching queries,
parametrized over hypervector size.

Expected mean distance from
an edge to a matching m-edge

set

Optimization
Algorithm

Analytical
Model

Accuracy
Analysis

65

Overview of Heim’s System Structure

Match Distribution Not-match Distribution

To model hardware error, an upper bound on
the bit flip probability is derived from the
hardware spec and applied to the analytical
model.

An upper bound of
bit flip rate

Optimization
Algorithm

Analytical
Model

Accuracy
Analysis

Derive distance
distributions

Derive optimal
thresholds and

expected accuracy

66

Overview of Heim’s System Structure

Threshold

To perform accuracy analysis, we derive
closed-form formulas for the expected accuracy and
compute the optimal threshold from these formulae.

Summary of Theoretical Formulations

67

To develop this analysis, we apply results from the theoretical cognitive science
community and contribute new derivations.

How does Heim perform?

68

Sound parameter optimization with Heim

We evaluated Heim on five hyperdimensional computing-based data structures,
parametrized with five different sizes.

Benchmark
data structures

69

Sound parameter optimization with Heim

We evaluated Heim on five hyperdimensional computing-based data structures,
parametrized with five different sizes.

We parametrize
data structures
with different

sizes.

70

Sound parameter optimization with Heim

We evaluated Heim on five hyperdimensional computing-based data structures,
parametrized with five different sizes.

We compared against dynamic tuning (dt-all) and other baselines, and configured all
methods to deliver 99% query accuracy.

We parametrize
data structures
with different

sizes.

71

Heim runs in milliseconds, and is orders of magnitude faster than dynamic
tuning-based approaches. (2-5 orders of magnitude faster)

Optimization runtime
for knowledge graph

Y-axis is log-scale

72

Optimization Runtime

Heim runs in milliseconds, and is orders of magnitude faster than dynamic
tuning-based approaches. (2-5 orders of magnitude faster)

Optimization runtime
for knowledge graph

Y-axis is log-scale

73

Optimization Runtime

Heim’s analysis is
analytical, the runtime
does not depend on the

data structure size

Heim-derived thresholds and sizes consistently meet accuracy target
(above shaded region).

We sample 100 random data structures for each benchmark
Y-axis is median accuracy, error bars are quartiles.

74

Accuracy

For several benchmarks, Heim is able to find parameterizations that dynamic
tuning cannot find.

We sample 100 random data structures for each benchmark
Y-axis is median accuracy, error bars are quartiles.

75

Accuracy

99% accuracy

3BPC BER1

0.1273

2BPC BER1

0.0215

76

We can perform perform hardware-aware parameter optimization, and use the derived
parameterizations to systematically analyze the tradeoffs between different device

technologies / usages of device technologies.

1. Anjiang Wei, Akash Levy, Pu (Luke) Yi, Robert Radway, Priyanka Raina, Subhasish Mitra, and Sara Achour. 2023. PBA: Percentile-Based Level Allocation for
Multiple-Bits-Per-Cell RRAM. In ICCAD.

Optimal RRAM Density at Iso-Accuracy

99% accuracy

3BPC BER1

0.1273

2BPC BER1

0.0215

77

We can perform perform hardware-aware parameter optimization, and use the derived
parameterizations to systematically analyze the tradeoffs between different device

technologies / usages of device technologies.

1. Anjiang Wei, Akash Levy, Pu (Luke) Yi, Robert Radway, Priyanka Raina, Subhasish Mitra, and Sara Achour. 2023. PBA: Percentile-Based Level Allocation for
Multiple-Bits-Per-Cell RRAM. In ICCAD.

Optimal RRAM Density at Iso-Accuracy

In this case study, 2BPC ReRAM outperforms 3BPC ReRAM, 3BPC ReRAM worse than conventional memory
at iso-accuracy across all hardware-optimized data structures. Systematic applications-to-devices analysis!

Conclusion

We presented Heim, the first static analysis framework for hyper-dimensional computation

that minimizes the resource usage in presence of hardware error

● Heim achieves better accuracy than dynamic tuning and offers guarantees, and is orders

of magnitude faster

● Heim enables iso-accuracy systematic application-to-device analysis

We envision Heim as a sound core and basis for future analyses that may be unsound but

apply to more practical applications

78

