JPF: From 2003 to 2023*

Cyrille Arthol[0000’0002’3656’1614], Pavel Parl'zek2 [0000700037071477446]7 Daohan

Qu3 [0009700047381176591], Varadraj Galgali4[0009’0007’2086*4542], and Pu (Luke)
YiS [0000—0001—6669—6520]

! KTH Royal Institute of Technology, Stockholm, Sweden artho@kth.se
2 Charles University, Prague, Czech Republic parizek@d3s.mff.cuni.cz
3 Nanjing University, Nanjing, China daochanqu@gmail.com
4 Belgaum, India varad23711@gmail.com
5 Stanford University, USA lukeyi@stanford.edu

Abstract. We give an account of JPF’s current architecture as it has
evolved over the last 20 years. Key changes include a modular, extensible
design, and Java 11 support.

Java 11 brought with it fundamental changes in the language and its
runtime, in particular, a new modular library system, different compi-
lation of string expressions to bootstrap methods, and changes in many
internal interfaces that allow access to the loaded code and the virtual
machine state. These changes required numerous adaptations in JPF to
ensure a successful compilation and correct behavior under Java 11.

Keywords: JPF - Java - Software model checking - Program analysis.

1 Introduction

JPF is a framework for Java bytecode analysis [1I2] that can be used to verify
and search for bugs in programs written in Java-like languages. At the core of
the system is an explicit-state model checker [3], which can be extended to allow
many other analyses, such as symbolic execution [4].

Earlier papers covered the original architecture of JPF as a virtual machine
for Java bytecode [I] or gave an abridged account of the current architecture [2].
This paper gives a detailed description of the current architecture, which is much
more modular and extensible than 20 years ago and supports native methods
through a well-designed interface.

As part of the developments of the last two decades, Java 11 was the first long-
term release that brought major changes to Java and gave up on full backward
compatibilityEI Key changes at the bytecode level include a new modular library
system, a different compilation of string expressions to bootstrap methods, and
the removal of or changes in many internal interfaces [5].

* Supported by Google Summer of Code.
5 While most of these changes were introduced with Java 9 as a development release,
we will group any changes between Java 8 and Java 11 under the latter.

2 C. Artho et al.

For its program analysis, JPF has to support the full functionality of Java
bytecode and integrate closely with the underlying Java Virtual Machine (JVM).
Thus, it is impacted by internal changes of the Java platform that do not affect
most other applications. This was evidenced by JPF first not even compiling
under Java 11. After one year, we had adapted the code base so it compiled, but
about 75 % of all regression tests failed initially. Four years of additional work
addressed the major changes that were needed to support Java 11. During this
time, we added over 140 new regression tests (and removed a few obsolete ones)
and implemented new functionality with about 10,000 lines of additional code.

This paper is the first detailed publication presenting JPF’s architecture
and capabilities as they have evolved over the last 20 years since the early ver-
sion of JPF, which was designed differently [I]. It also gives an overview of the
challenges involved in adapting a bytecode-level program analysis tool to ma-
jor architectural and implementation-level changes of the underlying platform.
The remainder of this paper is organized as follows: Section [2] covers the back-
ground and related work, while Section [3]describes JPF’s architecture. Section [4]
describes the key changes from Java 8 to Java 11 and the adaptations in JPF
to support them. Section [5 covers other major enhancements from the last five
years, and Section [6]shows the evolution of JPF over that time. Finally, Section|[7]
summarizes our work and concludes.

JPF is freely available on GitHub, in the repository https://github.com/
javapathfinder/jpf-core/. Extensive user and developer documentation, in-
cluding an installation and how-to-run guide, is provided in the form of wiki
pages at https://github.com/javapathfinder/jpf-core/wikil

2 Background and Related Work

JPF is an extensible framework for Java bytecode analysis [1I2] and built as an
explicit-state model checker [3].

In order to explore all possible and relevant outcomes of a program exe-
cution, JPF explores all possible outcomes of non-deterministic choices. Such
choices can be induced by a non-deterministic thread schedule or unspecified
variables/inputs. JPF has the ability to backtrack an execution to a previous
point to analyze alternative outcomes. Therefore, it implements a fully-fledged
JVM by itself but uses the underlying JVM (the “host JVM”; also see Sec-
tion [3]) to access the underlying platform’s functionality. This access happens by
delegating native methods at the JPF level to the host JVM.

By default, JPF reports a failure if an uncaught exception occurs or an
assertion is violated. Another type of failure can occur due to a deadlock (defined
as no remaining runnable thread being able to make progress, either due to
waiting on a lock that is being held by another thread or waiting for a notification
that never occurs). The set of built-in properties that JPF is able to check
includes also the absence of data races. JPF reports a data race when multiple
threads access the same memory location without synchronization and at least

https://github.com/javapathfinder/jpf-core/
https://github.com/javapathfinder/jpf-core/
https://github.com/javapathfinder/jpf-core/wiki

JPF': From 2003 to 2023 3

one of the accesses is write. To implement their own properties, users can add
listeners to support, e. g., temporal-logic properties [6].

2.1 History of JPF

JPF started in 1999; it and its community evolved significantly in the time since,
due to JPF being reimplemented and rewritten and eventually published under
the Apache 2 License. We outline the key milestones here:

1999: First version of JPF, developed at the NASA Ames Research Center in
the form of a translation from Java to Promela [7]. This first version was
limited because regular model checkers like SPIN [3], which analyzes Promela
models, cannot handle the dynamic creation of objects and threads (unless
an upper bound is known at compile time).

2000: Reimplementation as a concrete virtual machine for Java bytecode that
can backtrack execution [I]. JPF has used this approach since then.

2003: Introduction of extension interfaces and the architecture that modern
JPF has until today.

2005: JPF was released as open-source software on Sourceforge, being the first
NASA software project to be released in this way.

2008: First participation in Google Summer of Code, which supports students
working on open-source software with stipends.

2009: JPF moved to its own server, hosting extension projects and the docu-
mentation (wiki).

2017: Moved to GitHub. This allowed JPF to implement continuous integra-
tion [8] and accept outside contributions more easily.

2.2 Related Work

JPF is an explicit-state model checker for Java bytecode at its core. It inspired
similar works such as JNuke [9] and Moonwalker [10], which implement model
checking for Java bytecode or .NET code without native methods, respectively.

Other tools that analyze programs by using their own execution engine in-
clude Valgrind [I1], which looks for incorrect memory usage (corruption, leaks)
in binary programs using dynamic analysis, and KLEE [12], which implements
a symbolic execution engine on top of the LLVM [13] infrastructure.

Other software model-checking approaches are closer to the first version of
JPF [7] and analyze code after transforming it into a representation that can
express that entire state space at compile time. Examples include SLAM [I4],
which converts C code to a Boolean program for model checking, and CBMC [I5],
which uses a SAT solver on propositions derived from C code. This approach is
more popular for analyzing C code because the inability to handle dynamic mem-
ory allocation and thread creation is less relevant for C programs where memory
and thread usage are often bounded, especially for safety-critical systems [16].

Also, there exist several dynamic analysis frameworks that can be used to de-
tect runtime errors by monitoring the execution of a program within a particular

4 C. Artho et al.

virtual machine. Notable examples include RoadRunner [I7] and DiSL [I8] for
Java programs running on JVM, and SharpDetect [19] for C#/.NET programs.
All these frameworks work on the same principle, recording specific events and
the program runtime state on a dynamic execution trace, and forwarding this
information to a custom analysis plugin that detects the actual errors. They are
useful especially for multi-threaded programs and discovering possible concur-
rency errors (e. g., deadlocks and race conditions).

Table [I] gives an overview summary of the aforementioned tools by looking
at their overall approach (state space exploration vs. runtime monitoring) and
supported platforms. In this table, “state space exploration” can refer to model
checking or symbolic execution. The table shows that related tools are too dif-
ferent (in terms of the principal approach or platform) for a straightforward
quantitative comparison. In particular, we are not aware of any tool for Java
bytecode with similar types of capabilities that JPF now has.

Table 1: Comparison of JPF with related tools by approach and target platform
Platform
Java bytecode x86 code CIL bytecode C source code

<= State space | JNuke (Java 5) SLAM
Q

g exploration | JPF (Java 11) KLEE Moonwalker CBMC
—

2 Runtime RoadRunner .
<% monitoring DiSL Valgrind | SharpDetect

3 JPF’s Architecture

JPF’s architecture separates bytecode execution from the functionality of library
classes, access to the underlying host JVM, and various ways of adapting and
extending the built-in functionality.

3.1 Functionality

At its core, JPF implements a virtual machine for bytecode instructions. The
entire state of a program (with the state of all its threads and the shared heap)
is managed by that virtual machine. Unlike a regular virtual machine, JPF
is capable of keeping copies of past program states and comparing them to
other states. Past states can be restored from these copies, which allows JPF to
implement a state space search of a program.

The state space search algorithm is configurable (depth-first search being
the default setting) and by default explores all outcomes of all non-deterministic
choices. This includes thread scheduling in case multiple threads are enabled
at a given state and the outcomes of all possible values of a non-deterministic
data choice. Such choices are either implemented through the Verify application

JPF': From 2003 to 2023 5

programming interface (API) or extensions such as SPF [] and typically model
unspecified user inputs.

Sequences of instructions that do not exhibit any choices are executed inside
a transition in JPF. A transition ends whenever a choice is hit during execu-
tion. Therefore, JPF computes the state space of a program on the fly, as the
extent of a transition depends on the instructions therein and their side effects.
Partial-order reductions optimize the state space and avoid unnecessary thread
scheduling choices. JPF is close to being a sound verification tool in the sense
that there are very few cases of property violations that it misses, but a few
implementation choices in the state hashing and partial-order reductions are not
sound in all cases, which makes JPF a bug-finding rather than a verification tool
in the strict sense [2], unless the default behavior is changed so a fully exhaustive
search is used, at the cost of being significantly slower in certain cases. Several
extensions aiming to make JPF a sound verification tool have been already pro-
posed, including the support for sound dynamic partial-order reduction [20] and
coverage of all behaviors permitted by the Java memory model [2T122].

3.2 Design

JPF itself is written in Java and runs on the so-called host JVM, which provides
internal functionality such as loading classes or interacting with the system via
native methods [1I2]. The system under test is executed by JPF’s virtual ma-
chine, which keeps track of any effects (such as changes to memory) of an exe-
cuted instruction (see Figure|[1)).

The main functionality of JPF is implemented in jpf-core, while optional
extensions can extend that functionality.

System under test and libraries

Model classes
JPF Model Java interface (MJI)
(jpf-core) JPF VM

Native peer classes

Extensions

Host JVM

Fig. 1: Architecture of JPF

The functionality of JPF (jpf-core) itself is divided into modules (see Ta-
ble. Module main implements the core analysis capability, while other modules
(explained below) implement models of library classes (classes), a bridge to the
underlying host JVM (peers), or auxiliary functionality.

6 C. Artho et al.

Table 2: Main JPF modules and their purpose

Module Purpose

annotations Run-time annotations in programs analyzed by JPF
classes Model library classes

examples Small example programs

main Core functionality (VM, state search, etc.)

peers Native peers for accessing JPF from model classes
tests Unit tests

Main. JPF has a very extensible design that allows developers to customize
almost any functionality. The base implementation of the VM in main and its
instruction set are generic, and while Java bytecode is the default concrete im-
plementation, other instruction sets can be supported.

The extensibility of JPF is achieved by all key functionality being customiz-
able through interfaces. We present the key interfaces below:

— A Searchlistener can track events arising from the state space search (e. g.,
when program analysis starts or ends, when a new state is created, or when
an existing already visited state is backtracked to).

— A VMListener gets notifications from program execution (e. g., when a method
call begins or a certain type of instruction is executed).

— A ChoiceGenerator can override the way how non-deterministic events are
explored or implement new types of choices.

— Instruction-related interfaces allow changing how sets of instructions or in-
dividual instructions are analyzed.

— A Scheduler has the capability of changing how the state space is analyzed,
e.g., to analyze the state space of multiple processes [23]

— A PublisherExtension creates reports on program analysis results.

Classes. Any Java program has to access functions of the Java library; this
starts by using the common super class Object as the first application-specific
class is loaded. Many Java library classes have functionality that is not suitable
for JPF’s analysis, as they include functionality that incurs globally visible side
effects (such as writing to a file) and use native methods. Native methods are not
available as Java bytecode but instead implemented by a system-specific run-time
library, usually written in C or C++-. As JPF only interprets the application-level
bytecode, it is not able to track the effects of native methods.

Therefore, classes using native methods have to be replaced by model classes
(in classes), which represent a Java implementation of code that makes invisible
side effects (through native method calls) in the regular library implementation
visible to JPF at the model class level. In this way, model classes solve the
problem of not being able to track the outcome of native code execution. Other
approaches have been attempted, such as using process-level virtualization to
track the state of an entire operation-system-level process. This approach is less

JPF': From 2003 to 2023 7

efficient because it can only analyze the state of a process at a “black-box” level,
preventing state compaction or partial-order reduction [24].

A model classes can completely replace the functionality of a library class, if
it can implement this entirely in Java, making all (side-) effects visible to JPF.
However, access to native methods requires the peers module (see below).

Annotations. This module implements annotations that are visible to JPF at
run time. The most important annotations are @MJI, which marks a method as
a bridge to a native peer, and attributes that affect the state space exploration
by ignoring fields during program analysis (eFilterField) or marking them as
not shared by multiple threads (@NonShared).

Peers. Model classes by themselves are limited to functionality that can be
implemented directly through bytecode. Much functionality, such as printing to
the console, requires access to the underlying run-time environment. Native peers
bridge this gap between bytecode and native code (see Figure . At the model
class level, native methods are declared normally (see Fig. line .

To delegate a native method call, JPF uses a so-called Model Java Interface
(MJI) layer to specify the native peer, a JPF-level class implementing native
methods. MJI methods handle parameters from bytecode at the JPF level and
pass them in the appropriate form to an actual native function on the host JVM.
A native peer usually accesses the host JVM and maps the state of the host JVM
object to the JPF-level object and also manages potential side effects of the host
JVM method (see Figure [1)).

MJI classes and methods follow a name-mangling scheme to encode the pack-
age name as part of the class name, and the return type, method name, and
parameter list of the underlying native method as part of the method name (see
Fig. line . This way, JPF can identify the right method at run time.

Figure [2] shows how the different layers of JPF interact when executing
code that prints “Hello, World!”. The bytecode first loads a reference to the
PrintStream instance and the string “Hello, World!”, in order to call printlnm
This method (available entirely in bytecode through the Java library) constructs
the correct final string with the newline character at the end and internally calls
OutputStreamWriter.write. That method uses OutputStreamWriter.encode
to convert the string to a byte array. Because the encoding of a string uses a
native method, encode is declared as such in the model class. The JPF na-
tive peer counterpart is an MJI method, which internally accesses the native
character-to-byte conversion functionality of the host JVM.

Generally, a native peer can delegate its functionality to the underlying native
method for calls that have no side effects on the Java-level object [25], or it can
implement its own logic and manage side effects in a complex way, such as when

" To save space, we elide Java package names (java/lang for System and java/util for
PrintStream), instruction and constant pool offsets, and the “L” denoting a fully
qualified class name.

10

15

8 C. Artho et al.

getstatic // Field System.out:PrintStream;
ldc // String Hello, World!
invokevirtual // Method PrintStream.println:(String;)V

(a) Bytecode to be executed

/#*% Java library: java.io.PrintStream (provided by the JVM) x/
public void PrintStream.println(String s) {

OutputStreamWriter. write (...);

}

/#% JPF model class: java.io.OutputStreamWriter (in “classes”) x/
public void write(String s, int off, int len) throws IOException {
= encode (...);

// mative method declaration in the model class
private native int encode (String s, int off, int len, byte[] buf);

/** JPF mative peer: JPF_java_-io_-OutputStreamWriter (in “peers”) x/
@QMJI public int encode__Ljava_lang_String_2II1_.3B__1 (MJIEnv env,
int objref, int sref, int off, int len, int bref) {
// access to the host JVM

(b) Model class interfacing with the native peer via MJI

Fig. 2: Interaction between code of the Java library (line , a model class with a
native method (line , and its native peer (line .

synchronizing program states between an application that is analyzed by JPF
and external applications that are connected through the network [26].

Tests. Tests contain over 1000 unit tests that check the internal functionality
of JPF, ensuring that key Java language or library features work correctly. Some
tests verify the verdict of a full program analysis on a small example.

Examples. A couple of small examples are also provided, along with their
configuration files, to exemplify the usage of JPF.

3.3 JPF extensions

JPF extensions are modular implementations of enhancements to JPF. They are
separate projects that are independent of the main part of JPF and implement
additional functionality, e.g., by overriding how unspecified values of variables
are interpreted or how an application interacts with its environment.

Notable extensions include symbolic execution [4], automated support of
stateless native methods [25], and automated support of certain types of net-
worked applications using either a centralization or a caching approach [23//26].

3.4 Program execution using JPF

When JPF is used, it typically is run with a configuration file that specifies the
application under test. JPF then proceeds as follows:

JPF': From 2003 to 2023 9

The configuration file is parsed and extensions are loaded as specified.

. The application main class and the necessary library classes are loaded.

Program execution begins at mainﬁ Execution covers the bytecode of the
program under test, Java libraries (without native methods), and model
classes.

Any instruction that creates a new thread, affects the state of another thread,
or produces a non-deterministic choice for other reasons is handled by a
ChoiceGenerator, which causes the current transition to end. New transi-
tions are scheduled and added to the state space search.

Any time a model class declares a Model Java Interface method, execution is
handled by the corresponding native peer method inside JPF. These methods
are able to access (possibly native) methods of the underlying host JVM.
The analysis stops when JPF has explored the entire state space of a pro-
gram, runs out of memory, or finds a property violation to report

3.5 Challenges in modeling Java library classes

The main challenges in writing a model class (and if needed, its native peer) are
the following:

A model class has to reflect the functionality of the original Java class faith-
fully; differences may result in an overapproximation of the behavior under
JPF, or an unsound underapproximation.

While a model class can hide side effects of native methods, these side effects
are often an essential part of the program behavior, such as for networked
applications [23126]. When native methods interact with the environment,
major changes in JPF are necessary to handle the side-effects of both the
host JVM and its environment (the underlying operating system) [26/24].
Because a native peer interacts with the host JVM, it often has additional
state information compared to the model class. Care has to be taken that
this additional state (which is used by native methods) remains consistent
with the state of the model class (which is visible and used by non-native
methods).

It is not possible to create a model for only selected methods, so a model
class has to support the entire public API that the program under test
requires. Furthermore, it is often not possible to replace a single class in
isolation, as multiple classes in the same package or even related packages
(such as java.io and java.net) often interact and have to be replaced as
an ensemble.

The Java base classes (in module java.base) in Java 11 alone contain 190
native methods, so the effort of supporting all of them is prohibitive. JPF
therefore focuses on the most commonly used native methods.

8 More classes are loaded at run time as needed [27].

9 One can specify that JPF continue the state space search after a property violation.

10 C. Artho et al.

4 Adaptations in JPF for Java 11

Several changes in compiled Java code (bytecode) from Java 8 to Java 11 heavily
affect runtime environments, including JPF, and even the build system. Here,
we describe these challenges and our solutions to them.

4.1 Module system

Java 11 introduces a module system that provides an additional unit of encapsu-
lation on top of Java packages [28]. Modules have to declare their dependencies
explicitly and can also declare the services they provide. In Java 11, built-in
modules are bundled in a new archive format (JMOD). Thus, JPF no longer
reads the classes directly but delegates reading class files from these archives
to the host JVM. To support the module layer, we extended JPF’s class loader
with new functionality to support the module API. In particular, the Proxy API
(which is used for reflection) has to support module information in Java 11.

4.2 Bootstrap methods

Java 8 introduces support for dynamic languages and lambda expressions, which
are functions that are not bound to an identifier. These functions cannot be fully
resolved at compile time. Internally, they are compiled into so-called bootstrap
methods that instantiate a valid anonymous function at class load time in order
to accommodate concrete uses.

This change allows for optimized string handling: In Java 8 and prior, string
output is handled by creating a StringBuilder instance and appending strings
to its buffer. This requires expensive creations of intermediate objects and sub-
sequent conversions of these objects to String instances for tasks as simple as
adding a number to an output string. In Java 11, specialized bootstrap methods
handle string output with non-string parameters much more efficiently.

Figure [3] illustrates this with a simple example. As can be seen, a simple
string expression (Fig. compiles into complex bytecode (Fig. under Java
8. The resulting code produced by the Java 11 compiler is much more com-
pact (Fig. ; however, most of the functionality is delegated to the bootstrap
method makeConcat WithConstants, which takes an integer parameter and re-
turns a string. While we cannot show the details here, one can see that parameter
i is part of the bootstrap method, but the string constant “Number” is not a run-
time parameter. The bootstrap method is expanded into a callable anonymous
function (a call site [29]) at runtime by the class loader, which adds the string
constant, before it can be called by the bytecode instruction invokedynamic.

When a class is loaded, the target of an invokevirtual instruction (a call to
a dynamically generated method) has to resolve to a valid call site [29]. The
call site is generated from the bootstrap method. The bootstrap method, e. g.,
makeConcatWithConstants in Fig. instantiates a complete call site by cre-
ating an anonymous function using a concrete value (“Number” in Fig. for
the string constant.

JPF: From 2003 to 2023 11

public static void print(int i) {
System.out.println (?Number.” + 1i);

(a) Source code

getstatic Field System.out:PrintStream;
new class StringBuilder
dup

//
//
invokespecial // Method StringBuilder.”<init >7:()V
1dc // String Number
//
//
//
//

invokevirtual Method StringBuilder.append:(String;) StringBuilder;

iload_0

invokevirtual Method StringBuilder.append:(I)StringBuilder;
invokevirtual Method StringBuilder.toString:() String;
invokevirtual Method PrintStream.println:(String;)V

return

(b) Compilation with Java 8

getstatic // Field System.out:PrintStream;

iload_0

invokedynamic // makeConcatWithConstants:(I)String;
invokevirtual // Method PrintStream.println:(String;)V
return

(c) Compilation with Java 11

BootstrapMethods:
0: #19 REF_invokeStatic StringConcatFactory.makeConcatWithConstants:
(MethodHandles$Lookup; String ; MethodType; String ; [Object;) CallSite;
Method arguments:
#20 Number \u0001

(d) Bootstrap method structure

Fig. 3: String handling and output under Java 8 and Java 11

Lambda expressions are also handled internally via bootstrap methods. Some
lambda expressions are serializable, in particular in java.util.Comparator,
which is often used for sorting.

4.3 Bootstrap methods in JPF

JPF for Java 8 had limited support for bootstrap methods, handling a few com-
mon cases. Due to the more widespread use of lambda expressions in Java 11
(especially for string concatenation and output), shortcomings in the earlier im-
plementations had to be addressed. The internal implementation of OpenJDK
for bootstrap method resolution generates the bytecode of the call site at load
time. This is complex and involves internal APIs and native calls that JPF does
not support. JPF instead models the behavior of the bootstrap method and
implements its own support of invokedynamic for string concatenation.

When used to concatenate strings, instruction invokedynamic calls a func-
tion that takes arguments to be concatenated and returns the resulting String
instance. JPF can easily implement this at VM level if all the arguments are
String instances or primitive types, since their string representation could be

12 C. Artho et al.

easily constructed from their meta-data stored at VM runtime. However, for
other reference type arguments, their toString() methods have to be called.
This method call no longer happens in the form of a method call in the bytecode
but is done automatically by the JVM. JPF mimics this behavior to support
Java 11 string expressions by analyzing all arguments on the operand stack to
convert them to a string if needed. Our approach therefore avoids the complex
dynamic bytecode generation of OpenJDK 11.

To support serializable lambda expressions, OpenJDK uses a special boot-
strap method called altMetafactory. As JPF cannot use that mechanism, we
need another approach to handle serializable lambda expressions: JPF creates
an object that implements the target interface of a lambda expression, which
happens to make serialization easier — we only need to add Serializable to
this object’s implemented interface list, and the object serialization mechanism
can then serialize the lambda expression automatically.

4.4 Reflection

One of the primary goals of adding modules in Java 11 was strong encapsulation,
which attempts to limit reflection and promote the modular approach to improve
security. As a consequence of this, the reflection API no longer permits access
to private fields without issuing a warning (as of Java 11); in later releases, such
access is denied by default [30] or removed entirely [31]. Under Java 11, various
tests raised warnings due to illegal reflective access taking place. The problem
was caused by the executing code using reflection, trying to access non-public
fields/methods residing in different modules.

To fix the problem, it needs to be ensured that the accessing code present in
the module has access rights to the module it is trying to access the field/method
from. Specifying the -—add-opens option to jvmArgs within build.gradle for
the necessary packages fixes the problem, ensuring that JPF will not break due
to illegal-reflective access errors when using newer versions of Java.

4.5 Internal APIs

Many implementations of the Java API (java.* packages) use internal APIs,
such as com.sun.* and jdk.internal.*, in their implementation. Such internal
APIs are often highly dependent on the native methods and the underlying JVM.

After Java 8, many such internal packages have been replaced with new
packages under jdk.internal. Replacement for existing functionality is usually
available under a redesigned API, such as java.lang.StackWalker, which pro-
vides more flexible and efficient stack traversal functionalities, like lazy traversal,
frame filtering, and criteria for stopping.

The most straightforward strategy to minimize dependency on internal APIs
is to use a model class, which replaces the problematic class entirely. However,
providing an accurate model class is a challenge of its own. For example, JPF for
Java 8 uses a model class for DateFormat, providing a simplified implementation
of key date methods. The changes in Java 11 also affected date handling and

JPF': From 2003 to 2023 13

caused four regression tests to fail. The increased complexity of the Java 11
implementation made it difficult to maintain a model class for such functionality.
To enforce strong encapsulation of JDK internals, any JPF constructs us-
ing internal data have been rewritten by leveraging model classes and Model
Java Interface (MJI) components to intercept method invocations and delegate
them to dedicated classes. Notable updates include the StackFrameInfo model
class that provides support for the StackWalker API and the ServiceLoader
model class that ensures support for the DateFormat API. Additionally, the
MethodHandles mechanism is used to support CountDownLatch, ExecutorSer-
vice, and Semaphore, which are utility classes to support concurrent program-
ming. We also added support for the PlatformClassLoader class and improved
SecureClassLoader to help with service provider loading.

Many of these changes (such as the ServicelLoader model class and the
MethodHandles mechanism) lift the layer at which a model class is used to a
higher level by supporting general delegation mechanisms in the Java library
better. This reduces the number of model classes needed and makes it easier to
fully support internal functionality, especially when it has few dependencies on
native methods.

4.6 Build system

Since 2018, JPF has been using Gradle as the build automation tool of choice.
For a user, Gradle has the advantage of automatically downloading any depen-
dencies, as long as the available JVM used to run Gradle supports them.

This results in multiple dependencies: The version of Java used has to be able
to both run Gradle and compile and execute the software being built and tested.
Therefore, targeting a different Java version often requires updating Gradle as
well. This ensures the ability to support newer versions of Java and benefit from
other improvements in Gradle.

However, these Gradle updates often include major changes that deprecate
an old build mechanism or even change Gradle’s domain-specific language that
is used to declare build tasks. Therefore, major Gradle updates may require a
redesign of some build tasks. Deprecations of certain features also usually have
an effect with the next major version.

The JPF project has made two major updates in using Gradle: from version
4.7 to version 5.4.1 in 2019, and again to version 8.2.1 in 2023. We eliminated
any use of deprecated features to allow at least one more major version upgrade
without changes in the future. By redefining tasks using the task configuration
avoidance API, which deters creation of unnecessary tasks, the build process
became more efficient. We also now use plugins to support publishing to a local
Maven repository and measure statement coverage (using JaCoCo).

4.7 Other adaptations

Various other internal changes or defects that were discovered during develop-
ment for Java 11 support required corresponding adaptations in JPF:

14 C. Artho et al.

— Support for new internal string representation (JEP 254 [32]), which allows
strings in memory to be encoded as either LATIN1 or UTF16. The content of
a string is now stored as an array of bytes rather than an array of characters.

— Removal of unnecessary explicit manual boxing of primitive values in objects;
adaptations to changes in the unboxing APT of primitive classes (valueOf).

— Removal of string buffer-related model classes (StringBuilder, StringBuffer)
that are no longer needed, because their functionality can be safely delegated
to the library of the host JVM.

— Support for the stream API.

— Better support for loading classes from JAR files and URLs.

— Better support for correct type handling.

— Various other fixes (file I/O, internals of threads and concurrency packages).

— Updates in the documentation and renaming of the git branches to make
Java 11 the default Java version for JPF.

5 Other Enhancements

Other enhancements that have been included with the Java 11 support include
test pollution detection and bit-flip simulation, which are both compact enough
to be included in jpf-core rather than as an extension of their own.

5.1 Test pollution detection

Flaky tests are software tests that non-deterministically pass or fail. They under-
mine developers’ trust in the test infrastructure, and waste many man-hours to
investigate non-existing bugs. Order-dependent flaky tests are a prominent type
of flaky tests [33], where polluter tests, the kind of software tests that modify
the program state shared among other tests, cause other tests to fail. It is there-
fore worthwhile to proactively detect test pollution and prevent order-dependent
flakiness. A technique dubbed PolDet was developed to detect polluter tests [34].

Because JPF provides infrastructure support for detecting other potential
issues in software tests, such as race conditions and deadlock, PolDet is re-
implemented in JPF (PolDet@JPF) [35] to combine the capability of PolDet and
JPF. PolDet@QJPF captures and compares the states before and after the test
execution with JPF’s state serialization mechanism. Its implementation is only
about 200 lines of code on top of JPF but can detect 26 polluter tests existing
in 13 Java projects. This demonstrates JPF’s versatility for rapid prototyping
of various software tools in research.

5.2 Systematic Bit-Flip Fault Injection and Exploration

Computer hardware is susceptible to errors. Hardware defects or radiation can in-
duce errors to the hardware, which can result in a memory bit being flipped. With
the increasing complexity of computer hardware according to Moore’s law [36],
bit flips become more likely [37], making it important to improve the resiliency

JPF': From 2003 to 2023 15

public static void foo(@BitFlip int n) {
System.out.println(n);

Fig. 4: An annotation triggering a bit-flip analysis for the method parameter

of software against hardware errors. However, these hardware errors are non-
deterministic and hard to reproduce. To evaluate software’s resiliency against
bit flips, fault injection [38] can simulate the outcome of such events at the
software level.

To support such fault injection, we use JPF to systematically inject and
explore bit-flip faults in the user specified variables in Java programs. Specifically,
the users can specify a list of variables and for each variable v; specify k;, the
number of bits to flip in it. Considering that any k; bits of v; are possible
to be flipped in real hardware faults, we let JPF execute the program in all
possible ways to systematically evaluate programs’ resiliency to bit-flip faults.
For a simple example, consider the code in Figure [4 We want to know what
happens if some error causes a bit to be flipped in the argument to method foo.
Since n is of type int, our implementation explores all the 32 cases in which bit
is flipped, so the expected output of calling foo(0) is 1 2 4...-2147483648.

Our implementation provides a BitFlipListener, a JPF listener that moni-
tors the list of user-specified variables and performs bit-wise fault injection before
the relevant instructions execute. Specifically, we support injecting bit-flip faults
to three kinds of variables, (1) static and instance fields, (2) method arguments,
and (3) local variables, whose type can be any primitive data types. For the
fields and local variables, the bit flips are injected when they are written by
the programs. For the method arguments, the bit flips are injected when the
method is invoked and the arguments are assigned. BitFlipListener registers
a Choice Generator to inject all possible bit flips to the corresponding operand
in the operand stack before the store/write instruction or the invoke instruction,
depending on the variable type.

A user can specify the variables to flip in three ways: (1) calling getBitFlip
APT in the application code, (2) adding @BitFlip annotation to the variables,
and (3) specifying in the command line arguments without changing the appli-
cation code. For example, in Figure 4, we can (1) add n=getBitFlip(n,1) at
the beginning of the method foo, (2) annotate n with @BitFlip(1) (where (1)
can be omitted because k = 1 by default), or (3) specify bit-flip fault injection
in method foo, parameter n, and k£ = 1 in the command line arguments.

Our implementation is based on JPF’s Verify.getInt, which generates all
possible integer values in a given range. The BitFlipListener parses the anno-
tations and the command line arguments and adds the specified variables to a
watch list.

A key challenge in the implementation is that JPF cannot register several
choice generators at the same point of the application code. We resolve this issue
by registering only one choice generator even when the number of bits to flip, &,

16 C. Artho et al.

in a variable is k > 1. Specifically, we register only one IntIntervalGenerator
that produces an integer m in range [0, (}')) where n is the number of bits of the
variable, and then decode the integer using binomial coefficients to get the set
of k in n bits to flip. The decoding process is as follows: Because (";1) out of
(Z) combinations do not select the n** bit, if m > (";1), we select the n' bit,
let m' =m — (";1) and k' = k — 1; otherwise, we do not select the n'” bit and
let m' = m, k" = k. If we then let n’ = n— 1, with the same process on n’,m’, k’,
we can decode out the set of £’ in the remaining n’ bits, and then recursively
get all the k bits to flip.

We implemented a JPF regression test class that checks our injection engine
in various scenarios and documents the basic usage. It verifies all bits are flipped
exactly once in a variable using a global counter at JPF level. Besides, we used
our tool to check the resiliency of Cyclic Redundancy Check (CRC) and Inter-
national Standard Book Number (ISBN) algorithms against bit-flip faults. We
confirmed that both algorithms can detect all one-bit flips, but cannot detect all
two-bit flips, as expected. Our implementation has been included in JPFE

6 Project Evolution and Evaluation

The evaluation of the validity of JPF is based on automated unit tests, which
execute key features of JPF. JPF-level unit tests internally run small applications
using JPF’s analysis engine, thus effectively implementing system tests [39]. Our
experimental evaluation is therefore based on these unit tests, which grew from
864 tests, for the code base supporting Java 8, to 1002 tests at the time of
writing.

Figure[5]shows how the code base grew in the last five years, to accommodate
for Java 11 functionality[l] We sometimes observe sudden code size increases and
drops in failing tests, which is usually because larger amounts of work had been
merged into the Java 11 development branch at that time.

The first large decrease in failing tests was thanks to preliminary support
for Java 11 string handling; the final large code growth was from incorporating
patches and tests from the mainline development (for Java 8) into Java 11.

The graph shows that while we also had contributions at other times of the
year, virtual summer internships supported by Google Summer of Code were a
major factor in the contributions, as it was possible to carry out development
that was not directly tied to a short-term research goal.

7 Conclusions

This paper has provided a detailed account of JPF’s current architecture. JPF’s
modular design separates bytecode execution from code that models key library

10 https://github.com/javapathfinder/jpf-core/pull/295

11 JPF used to be handled as a Mercurial repository, and older versions of Mercurial
were too slow to handle a large project history, so the project history was purged in
2018 by importing the entire code base as an initial commit in a new git repository.

https://github.com/javapathfinder/jpf-core/pull/295

JPF': From 2003 to 2023 17

LoC ——
Test cases ——
Failing tests —»—

JPF for Java 11: growth in code size and test cases

188000 1000
187000 +
186000 l/ 800 o
g 185000 | 8
< 184000 600 E
& 183000 | Z
o 182000 “ L] 400 &
8 181000 = E
180000 /F ', 200 Z
179000 b
178000 o . S 0
6‘\\%6\\\%6‘\@6\\\%Q"\Q/QQ'\@QQ"\(&Q’\@Q\\&Q’\&Q\\&Q’\&Q&‘)

Date (month/year)

Fig. 5: Evolution of Java 11 development from 2018-2023.

functions and code that interfaces with the underlying run-time environment.
Thanks to a very extensible design, JPF’s functionality can be modified from
concrete to symbolic execution or from a single application to multiple processes,
which can even be networked.

Most of the development effort of the last five years was focused on supporting
Java 11. Its major changes required corresponding adaptations in JPF: The
new modular library system required extensions in the class loader; a different
compilation of string expressions to bootstrap methods required support for
them; and internal API changes brought both simplifications in the code base
(because some model classes could be dropped) as well as complications, because
new types of interfaces to internal VM data structures had to be supported.

Future work includes ensuring seamless Java 11 support for JPF’s extensions
and support for the next stable Java release (Java 17).

Acknowledgments

We would like to thank Alexander Kohan, Dan Smith, Gayan Weerakutti, Jean-
derson Barros Candido, John Toman, Malte Mues, Nastaran Shafiei, Quoc-Sang
Phan, Vaibhav Sharma, Wen Zhang, Willem Visser, Amgad Rady, and Yuvaraj
Anbarasan for their contributions to supporting Java 11.

We would also like to thank the Google Summer of Code program for their
support and Soha Hussein and other JPF organization administrators.

This work was partially supported also by the Czech Science Foundation
project 23-06506S.

18 C. Artho et al.
References
1. Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio

10.

11.

12.

13.

14.

15.

Lerda. Model checking programs. Automated Software Engineering, 10(2):203—
232, 2003.

. Cyrille Artho and Willem Visser. Java Pathfinder at SV-COMP 2019 (competition

contribution). In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard
Steffen, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, pages 224-228, Cham, 2019. Springer International Publishing.

G. Holzmann. The SPIN Model Checker. Addison-Wesley, 2004.

Corina S. Pasareanu and Neha Rungta. Symbolic PathFinder: Symbolic execution
of Java bytecode. In Proceedings of the 25th IEEE/ACM International Conference
on Automated Software Engineering, pages 179-180, 2010.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, and Daniel Smith.
The Java Language Specification, Java SE 11 Edition. Oracle, 2018.

Matt Walker, Parssa Khazra, Anto Nanah Ji, Hongru Wang, and Franck van
Breugel. jpf-logic: a framework for checking temporal logic properties of Java
code. ACM SIGSOFT Software Engineering Notes, 48(1):32-36, 2023.

Klaus Havelund. Java PathFinder, a translator from Java to Promela. In Theo-
retical and Practical Aspects of SPIN Model Checking: 5th and 6th International
SPIN Workshops Trento, Italy, July 5, 1999 Toulouse, France, September 21 and
24, 1999 Proceedings 5, pages 152—152. Springer, 1999.

Martin Fowler and Matthew Foemmel. Continuous integration. http://www.
martinfowler.com/articles/continuousIntegration.html) 2006.

Cyrille Artho, Viktor Schuppan, Armin Biere, Pascal Eugster, Marcel Baur, and
Boris Zweimiiller. JNuke: Efficient dynamic analysis for Java. In Rajeev Alur
and Doron A. Peled, editors, Computer Aided Verification, pages 462—465, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

Niels HM Aan de Brugh, Viet Yen Nguyen, and Theo C Ruys. Moonwalker:
Verification of .NET programs. In Tools and Algorithms for the Construction and
Analysis of Systems: 15th International Conference, TACAS 2009, Held as Part of
the Joint FEuropean Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings 15, pages 170-173. Springer, 2009.
Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan notices, 42(6):89-100, 2007.
Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs. In
OSDI, volume 8, pages 209224, 2008.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In International symposium on code generation
and optimization, 2004. CGO 2004., pages 75-86. IEEE, 2004.

Thomas Ball and Sriram K Rajamani. The SLAM toolkit. In Proceedings of
CAV 2001 (13th Conference on Computer Aided Verification), volume 2102, pages
260-264, 2000.

Daniel Kroening and Michael Tautschnig. CBMC—C bounded model checker: (com-
petition contribution). In Tools and Algorithms for the Construction and Analysis
of Systems: 20th International Conference, TACAS 2014, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2014, Greno-
ble, France, April 5-13, 2014. Proceedings 20, pages 389-391. Springer, 2014.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

JPF': From 2003 to 2023 19

Les Hatton. Safer language subsets: an overview and a case history, MISRA C.
Information and Software Technology, 46(7):465-472, 2004.

Cormac Flanagan and Stephen N. Freund. The RoadRunner dynamic analysis
framework for concurrent programs. In Sorin Lerner and Atanas Rountev, editors,
Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE’10, Toronto, Ontario, Canada, June
5-6, 2010, pages 1-8. ACM, 2010.

Lukas Marek, Yudi Zheng, Danilo Ansaloni, Aibek Sarimbekov, Walter Binder,
Petr Tuma, and Zhengwei Qi. Java bytecode instrumentation made easy: The DiSL
framework for dynamic program analysis. In Ranjit Jhala and Atsushi Igarashi,
editors, Programming Languages and Systems - 10th Asian Symposium, APLAS
2012, Kyoto, Japan, December 11-13, 2012. Proceedings, volume 7705 of Lecture
Notes in Computer Science, pages 256—263. Springer, 2012.

Andrej Cizmérik and Pavel Parizek. SharpDetect: Dynamic analysis framework
for C#/.NET programs. In Jyotirmoy Deshmukh and Dejan Nickovic, editors,
Runtime Verification - 20th International Conference, RV 2020, Los Angeles, CA,
USA, October 6-9, 2020, Proceedings, volume 12399 of Lecture Notes in Computer
Science, pages 298-309. Springer, 2020.

Kyle Storey, Eric Mercer, and Pavel Parizek. A sound dynamic partial order
reduction engine for Java Pathfinder. ACM SIGSOFT Software Engineering Notes,
44(4):15-15, 2021.

Jeremy Manson, William Pugh, and Sarita V Adve. The Java memory model.
ACM SIGPLAN Notices, 40(1):378-391, 2005.

Huafeng Jin, Tuba Yavuz-Kahveci, and Beverly A Sanders. Java memory model-
aware model checking. In Tools and Algorithms for the Construction and Analysis
of Systems: 18th International Conference, TACAS 2012, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,
Estonia, March 24-April 1, 2012. Proceedings 18, pages 220-236. Springer, 2012.
Nastaran Shafiei and Peter Mehlitz. Extending JPF to verify distributed systems.
ACM SIGSOFT Software Engineering Notes, 39(1):1-5, 2014.

Cyrille Artho, Kuniyasu Suzaki, Masami Hagiya, Watcharin Leungwattanakit,
Richard Potter, Eric Platon, Yoshinori Tanabe, Franz Weitl, and Mitsuharu Ya-
mamoto. Using checkpointing and virtualization for fault injection. [IJNC,
5(2):347-372, 2015.

Nastaran Shafiei and Franck van Breugel. Automatic handling of native methods
in java pathfinder. In Proceedings of the 2014 International SPIN Symposium on
Model Checking of Software, pages 97-100, 2014.

Watcharin Leungwattanakit, Cyrille Artho, Masami Hagiya, Yoshinori Tanabe,
Mitsuharu Yamamoto, and Koichi Takahashi. Modular software model checking
for distributed systems. IEEE Transactions on Software Engineering, 40(5):483—
501, 2013.

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification. Addison-Wesley, 2013.

Alan Bateman, Alex Buckley, Jonathon Gibbons, and Mark Reinhold. JEP 261:
The module system. https://openjdk.org/jeps/261, 2014.

Oracle. Class CallSite. |https://docs.oracle.com/en/java/javase/11/docs/
api/java.base/java/lang/invoke/CallSite.html, 2018.

Alex Buckley and Mark Reinhold. JEP 396: Strongly encapsulate JDK internals
by default. https://openjdk.org/jeps/396), 2020.

Alex Buckley and Mark Reinhold. JEP 403: Strongly encapsulate JDK internals.
https://openjdk.org/jeps/403, 2021.

https://openjdk.org/jeps/261
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/invoke/CallSite.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/invoke/CallSite.html
https://openjdk.org/jeps/396
https://openjdk.org/jeps/403

20

32.

33.

34.

35.

36.

37.

38.

39.

C. Artho et al.

Brent Christian and Xueming Shen. JEP 254: Compact strings. https://openjdk.
org/jeps/254, 2014.

Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. iDFlakies: A
framework for detecting and partially classifying flaky tests. In 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST), pages 312—
322, 2019.

Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. Reliable testing: De-
tecting state-polluting tests to prevent test dependency. In Proceedings of the
2015 International Symposium on Software Testing and Analysis, ISSTA 2015,
page 223-233, New York, NY, USA, 2015. Association for Computing Machinery.
Pu Yi, Anjiang Wei, Wing Lam, Tao Xie, and Darko Marinov. Finding polluter
tests using Java PathFinder. SIGSOFT Softw. Eng. Notes, 46(3):37-41, 2021.
Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum, 34(6):52—
59, 1997.

Laszlo B Kish. End of Moore’s law: thermal (noise) death of integration in micro
and nano electronics. Physics Letters A, 305(3-4):144-149, 2002.

M. Hsueh, T. Tsai, and R. Iyer. Fault injection techniques and tools. IEFE
Computer, 30(4):75-82, 1997.

The JPF Team. Writing JPF tests. |https://github.com/javapathfinder/
jpf-core/wiki/Writing-JPF-tests| 2023.

https://openjdk.org/jeps/254
https://openjdk.org/jeps/254
https://github.com/javapathfinder/jpf-core/wiki/Writing-JPF-tests
https://github.com/javapathfinder/jpf-core/wiki/Writing-JPF-tests

	JPF: From 2003 to 2023

